• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 697
  • 345
  • 199
  • 124
  • 67
  • 36
  • 23
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 1864
  • 220
  • 213
  • 205
  • 154
  • 143
  • 136
  • 136
  • 135
  • 129
  • 128
  • 127
  • 118
  • 109
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Modelling the impact of deforestation on the stream flows - A case of Chalimbana river catchment in Chongwe, Zambia

Sakeyo, Emmanuel January 2008 (has links)
<p>Water is a basic necessity for sustaining life and development of society. Proper management, protection and exploitation of water resources are the challenges imposed by population growth, increasing pressure on the water and land resources by competing usage. A good amount of clean water exists on Earth although it is normally inadequate in supply because of anthropogenic activities such as deforestation and land use change. Like many other catchments that provide economic activities for the community’s livelihood, the Chalimbana river catchment in Zambia has been deforested heavily and most of the local communities believe that deforestation could be the main contributing factor to the drying up of Chalimbana River. The objective of this study was to analyse the impact of deforestation on the stream flow of Chalimbana River Catchment with the help of a conceptual hydrological model, HBV. There was a 24% reduction in the annual average rainfall amounts for the deforested period as compared to the period before deforestation. The Qrec/Qsim ratios had revealed that the annual stream flow generation for the period after deforestation (1987 to 1996) for the Chalimbana River had decreased by about 12% as compared to the period with enough forest cover (1975 to 1985). The ratio of annual Qrec/P had indicated that after a 30% forest loss in Chalimbana catchment, there was a 33% increase in the generation of the stream flow. Based on the results that were obtained, a number of recommendations aiming at improving the catchment management were made.</p>
282

Seismic anisotropy beneath the southern Puna Plateau

Robinson, Danielle D., Sandvol, Eric Alan, January 2009 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on December 30, 2009). Thesis advisor: Dr. Eric Sandvol. Includes bibliographical references.
283

The C*-algebras associated with irrational time homeomorphisms of suspensions /

Itzá-Ortiz, Benjamín A., January 2003 (has links)
Thesis (Ph. D.)--University of Oregon, 2003. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 68-69). Also available for download via the World Wide Web; free to University of Oregon users.
284

An electric circuit network model for fluid flow in oil reservoir

Munira, Sirajum 14 February 2012 (has links)
Interwell connectivity is a very important piece of the puzzle for petroleum engineers. To optimize the injection well flow for increasing the production rate, interwell connectivity is a very important parameter. To build a model that works with better precision and with less effort has always been desired by reservoir engineers. In this study we developed an electric circuit network model (referred as the admittance or ymodel) for calculating the admittance parameters to predict branch flow rates (injectorproducer well pair) of oil reservoirs with precision. The y-model is very simple and efficient model that can predict branch flow very efficiently. Injection and production flow rates are the key data used in this model, which also happens to be the most abundant data for oil reservoirs. Injector well bottom-hole pressure data can also be used in this model if available. The governing equation of the electric circuit analogy of well to well flow rates in the oil reservoir is based on Ohm’s law for admittance. A mathematical procedure is also being developed for this circuit network model which solves a series of equations and finds unique solutions for the admittances and branch flows. These results can further be used for predicting the production flow rate for individual producer well. The model shows very good agreement with the exploration data of real oil reservoir. / text
285

From illegal copying to licensed formats : an overview of imported format flows into Korea 1999-2011 / Overview of imported format flows into Korea 1999-2011

Kang, Jennifer Minsoo 02 August 2012 (has links)
The format program trade has grown rapidly in the past decade and has become an important part of the global television market. This study aimed to give an understanding of this phenomenon by examining how global formats enter and become incorporated into the national media market through a case study analysis on the Korean format market. Analyses were done to see how the historical background influenced the imported format flows, how the format flows changed after the media liberalization period, and how the format uses changed from illegal copying to partial formats to whole licensed formats. Overall, the results of this study suggest that the global format program flows are different from the whole 'canned' program flows because of the adaptation processes, which is a form of hybridity, the formats go through. Previous studies tend to simplify the adaptation process of format programs by just seeing it as a proof of nationalization, but this study found that format adaptations are much complicated. The way the formats were adapted to the local context differed by specific situations, such as cultural proximity, political ties with other countries, channel identities, target audiences, format genres, or conditions of the format license contracts. Moreover, there were also differences in where the initiative to make such adaptations came from. Thus, this study argues that format program flows are one of the many sub-flows in television program flows which complicate our understanding of what 'global' media is. / text
286

Multicommodity network flow models with FIFO transshipment handling policies

Mohapatra, Chinmoy 03 January 2013 (has links)
Integer multicommodity network flow (MCNF) models have applications in various areas like logistics, freight transportation, telecommunication and manufacturing. In this thesis we study an extension of the integer MCNF problem (MCNF-FIFO) where commodities are handled (processed) in a first-in-first-out (FIFO) order at each transshipment location and resource capacities are shared across arcs in the network. The objective of the MCNF-FIFO model is to find feasible routes for all commodities from their origins to destinations while minimizing the total transportation and holding cost or the sum of delivery times. We formulate the MCNF-FIFO problem on a time-space network and develop three different integer-programming (IP) formulations for the FIFO constraints, and two IP formulations for the flow conservations requirements. Since these formulations have a very large number of variables and constraints, we develop various algorithmic strategies to obtain good quality solutions quickly. The first strategy is to reduce the problem size by using properties of the optimal solution. We develop novel problem reduction and decomposition techniques that eliminate variables and constraints, and decompose the problem into smaller components. To further reduce the problem size, we classify the FIFO constraints into different categories by utilizing the relationships between different commodities, and provide specialized formulations for each of these categories so as to reduce the number of FIFO constraints significantly. The second strategy is to develop heuristic algorithms that provide near-optimal solutions to the MCNF-FIFO problem. Our first algorithm is an optimization-based heuristic that solves a relaxed MCNF-FIFO model with a limited number of FIFO constraints. Then, it removes the remaining infeasibilities in the solution of the relaxed MCNF-FIFO model using a repair heuristic to obtain a feasible solution. We develop two other heuristic algorithms that are stand-alone construction heuristics that build a feasible solution from scratch. To assess the effectiveness of the modeling and algorithmic enhancements, we implement the methods and apply them to three real life test instances. Our tests show that the problem reduction techniques are very effective in reducing the solution times. Among the heuristic algorithms, the optimization-based heuristic performs the best to find near-optimal solutions quickly. / text
287

The fluid dynamics of flagellar swimming by microorganisms and harmonic generation by reflecting internal, ocean-like waves

Rodenborn, Bruce Edward 08 July 2013 (has links)
This dissertation includes two fluid dynamics studies that involve fluid flows on vastly different scales, and therefore vastly different physics. The first study is of bacterial swimming using a flagellum for propulsive motion. Because bacteria are only about 10 [micrometers] in length, they swim in a very low Reynolds number (10⁻⁴) world, which is described by the linear set of governing equations known as the Stokes equations, that are a simplified version of the Navier-Stokes equations. The second study is of harmonic generation from nonlinear effects in internal, ocean-like wave beams that reflect from boundaries in a density stratified fluid. Internal wave reflection is an important oceanic process and may help sustain ocean circulation and affect global weather patterns. Such ocean processes have typical Reynold's numbers of 10¹⁰ or more and are only described by the full, nonlinear Navier-Stokes equations. In the low Reynolds number study, I examine theories by Gray et al.(1956) and Lighthill (1975) that describe swimming microorganisms using a helical flagellum for propulsive motion. I determine the resistance matrix, which can fully describe the dynamics of a flagellum, for flagella with different geometries, defined by: filament radius a, helical radius R, helical pitch [lambda], and axial length L. I use laboratory experiments and numerical simulations conducted in collaboration with Dr. Hepeng Zhang. The experiments, conducted with assistance from a fellow graduate student Chih-Hung Chen, use macroscopic scale models of bacterial flagella in a bath of highly viscous silicone oil. Numerical simulations use the Regularized Stokeslet method, which approximates the Stokeslet representation of an immersed body in a low Reynolds number flow. My study covers a biologically relevant parameter regime: 1/10R < a < 1/25R, R < [lambda] < 20R, and 2R< L <40R. I determine the three elements of the resistance matrix by measuring propulsive force and torque generated by a rotating, non-translating flagellum, and the drag force on a translating, non-rotating flagellum. I investigate the dependences of the resistance matrix elements on both the flagellum's axial length and its wavelength. The experimental and numerical results are in excellent agreement, but they compare poorly with the predictions of resistive force theory. The theory's neglect of hydrodynamic interactions is the source of the discrepancies in both the length dependence and wavelength dependence studies. I show that the experimental and simulation data scale as L/ln(L/r), a scaling analytically derived from slender body theory by my other collaborator Dr. Bin Liu. This logarithmic scaling is new and missing from the widely used resistive force theory. Dr. Zhang's work also includes a new parameterized version of resistive force theory. The second part of the dissertation is a study of harmonic generation by internal waves reflected from boundaries. I conduct laboratory experiments and two-dimensional numerical simulations of the Navier-Stokes equations to determine the value of the topographic slope that gives the most intense generation of second harmonic waves in the reflection process. The results from my experiments and simulations agree well but differ markedly from theoretical predictions by Thorpe (1987) and by Tabaei et al. (2005), except for nearly inviscid, weakly nonlinear flow. However, even for weakly nonlinear flow (where the dimensionless Dauxois-Young amplitude parameter value is only 0.01), I find that the ratio of the reflected wavenumber to the incoming wavenumber is very different from the prediction of weakly nonlinear theory. Further, I observe that for incident beams with a wide range of angles, frequencies, and intensities, the second harmonic beam produced in reflection has a maximum intensity when its width is the same as the width of the incident beam. This observation yields a prediction for the angle corresponding to the maximum in second harmonic intensity that is in excellent accord with my results from experiments and numerical simulations. / text
288

Flow of particulate suspensions through constrictions : multi-particle effects

Mondal, Somnath 20 September 2013 (has links)
Particle-laden flows occur in a variety of natural and industrial situations. As particulate suspensions flow through a medium, particles are often retained at constrictions such as pore throats, outlets or orifices. This occurs not only with oversized particles, but also with particles smaller than the constriction. For instance, jams are caused by the formation of particle bridges/arches when several particles attempt to flow through a constriction simultaneously. In many instances the success of an operation depends on our ability to either ensure or stop the flow of particles in the flow stream. Managing the flow of sand into wellbores during hydrocarbon production from poorly consolidated sandstone reservoirs, also referred to as sand control, is one such application in the oil and gas industry. This dissertation presents a multi-pronged effort at modeling the flow of granular suspensions of different concentrations, and through pore openings of different shapes, with two main objectives: (1) predicting the mass and size-distribution of the particles that are produced before jamming, and (2) investigating the underlying factors that influence the onset and stability of particle arches. Since, the dominant interactions and retention mechanisms are concentration dependent, we divided particulate suspensions into three groups based on the volumetric particle concentration ([phi]). High-concentration suspension flows ([phi]>~50%) are dominated by particle-particle interactions. We modeled polydisperse sand packs flowing through screens with rectangular and woven-square openings using 3D discrete element method (DEM). Simulations were validated against experimental data for a wide range of screen opening and sand size distributions. From the experiments and DEM simulations, a new scaling relation is identified, in which the number of different sized particles produced before retention follows a power-law correlation with the particle-to-outlet size ratio. This correlation is explained with a simple probabilistic model of bridging in polydisperse systems and a particle-size dependent jamming probability calculated from experimental data. A new method is presented to estimate the mass and size distribution of the produced solids through screens. The method uses the entire particle size distribution (PSD) of the formation sand, is validated with experimental data and numerical simulations, and provides more quantitative and accurate predictions of screen performance compared to past methods. It is also found that the stability of particle arches is compromised when adjacent outlets are less than three particle diameters away from each other. Low-concentration suspension flows ([phi]<~1%) are dominated by particle-fluid interactions. They were modeled using analytical and stochastic methods to predict sand production through screens with slot and woven-square openings. Analytical expressions were derived for screens with a constant outlet size or with a known outlet size distribution. Monte Carlo simulations showed excellent agreement with the analytical solutions. Based on experiments, we have demonstrated that the models presented here are predictive, provided that an accurate representation of the formation sand PSD and the screen pore size distribution are available. In the intermediate-concentration regime (~1%<[phi]<~50%), the particle trajectories and the flow field are both influenced by each other. The onset of particle bridging due to hydrodynamic forces was studied for monodisperse systems, in a rectangular channel with a single constriction, using coupled computational fluid dynamics (CFD) and DEM simulations. It is shown that the probability of jamming increases with [phi], and there is a critical particle concentration ([phi, superscript asterisk]) for spontaneous bridging. The outlet-to-particle size ratio is the most critical parameter affecting [phi, superscript asterisk]. The effect of inlet-to-particle size ratio, fluid velocity, particle stiffness, particle-to-fluid density ratio, and the effect of convergence in flow geometry were also studied quantitatively. Finally, the application of micro-tomography images in constructing accurate 3D representations and calculating the pore size distribution of complex filter media is demonstrated. A simulation tool is presented that allows one to evaluate the performance of different screens without running expensive and sometimes inconclusive experiments, and enhances our understanding of screen performance. This helps to improve sand screen selection to meet performance criteria under a wide variety of conditions. / text
289

A hybrid approach for inclusion of acoustic wave effects in incompressible LES of reacting flows

Febrer Alles, Gemma January 2012 (has links)
LLean premixed combustion systems, attractive for low NOx performance, are inherently susceptible to thermo-acoustic instabilities - the interaction between unsteady heat release and excited acoustic wave effects. In the present work, a hybrid, coupled Large Eddy Simulation (LES) CFD approach is described, combining the computational efficiency of incompressible reacting LES with acoustic wave effects captured via an acoustic network model. A flamelet approach with an algebraic Flame Surface Density (FSD) combustion model was used. The ORACLES experiments - a perfectly premixed flame stabilised in a 3D sudden expansion - are used for validation. Simulations of the inert flow agree very well with experimental data, reproducing the measured amplitude and distribution of turbulent fluctuations as well as capturing the asymmetric mean flow. With reaction the measured data exhibit a plane wave acoustic mode at 50Hz. The influence of this plane wave must be incorporated into the LES calculation. Thus, a new approach to sensitise the incompressible LES CFD to acoustic waves is adopted. First an acoustic network model of the experimental geometry is analysed to predict the amplitude of the 50Hz mode just before the flame zone. This is then used to introduce a coherent plane wave at the LES inlet plane at the appropriate amplitude, unlike previous LES studies, which have adopted a "guess and adjust" approach. Incompressible LES predictions of this forced flow then show good agreement with measurements of mean and turbulent velocity, as well as for flame shape, with a considerable improvement relative to unforced simulations. To capitalise on the unsteady flame dynamics provided by LES, simulations with varying forcing amplitude were conducted and analysed. Amplitude dependent Flame Transfer Functions (FTFs) were extracted and fed into an acoustic network model. This allowed prediction of the stable/unstable nature of the flame at each forcing amplitude. An amplitude at which the flame changed from unstable to stable would be an indication that this coupled approach was capable of predicting a limit cycle behaviour. With the current simple FSD combustion model almost all cases studied showed a stable flame. Predictions showed considerable sensitivity to the value chosen for the combustion model parameter but specially to the acoustic geometric configuration and boundary conditions assumed showing evidence of limit cycle behaviour for some combinations. Nevertheless, further work is required to improve both combustion model and the accuracy of acoustic configuration and boundary condition specification.
290

The impact of the United States sanctions on Iran’s trade flows : A gravity model approach

Ghaderi, Elnaz January 2015 (has links)
The Iranian economy has over 30-years been under several of US sanctions due to differences in their political objectives, affecting primarily their economic lifeblood, the oil business. Therefore during this period the Iranian economy has experienced setbacks in their development of national prosperity. This paper investigates the effect of the economic sanctions, during the time period 1975-2006, on Iran’s trade flows by incorporating the gravity model. Also, including geographical proximity and cultural ties further extends the model, which has been shown to strongly influence trade. The findings suggest that sanctions have negative impact on trade flows and are consistent with previous findings. Further estimation methods such as the Heckman- and PPML method are applied accounting for zero trade flows. The empirical  results indicate that sanctions have had a large negative effect on trade flows as expected. When further dividing the sanctions into five different time periods the results conclude the previous ones, however the five time periods have been influenced by sanctions in different varieties. Hence sanctions hamper trade and prevent the Iranian economy to thrive to its fullest potential.

Page generated in 0.0696 seconds