• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 698
  • 346
  • 199
  • 124
  • 67
  • 36
  • 23
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 1871
  • 223
  • 217
  • 207
  • 157
  • 143
  • 138
  • 136
  • 136
  • 130
  • 129
  • 127
  • 118
  • 110
  • 109
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Computational fluid dynamics applications for the Lake Washington Ship Canal

Nielsen, Adam C. 01 May 2011 (has links)
The Seattle District wants to better manage the Ballard Locks and structures along the Lake Washington Ship Canal (LWSC) in a way that will maintain the environmental sustainability and biodiversity in the area. Due to strict salt water intrusion regulations in the LWSC, the Seattle District is working on upgrading their management practices such that they will resolve two inter-related problems. First, to improve the fish passage conditions for migrating salmon; and second, to learn how to better manage the salt wedge that forms and intrudes upstream. Based on the hydrodynamic and water quality results that are produced by this research, the Engineer Research and Development Center (ERDC) Portland Office will use their Eulerian-Lagrangian-Agent-Model (ELAM) to analyze fish patterns, looking for the most beneficial management schemes that assist salmon in migrating upstream. This research implemented CFD engineering techniques to help better understand the effectiveness of the hydraulic structures in the area, as well as come up with management practices that both mitigate the salt water intrusion from Puget Sound, and improve the migrating passages for salmon.
392

Macroscopic modelling of chemically reacting and radiating rarefied flows

Mark Goldsworthy Unknown Date (has links)
The Direct Simulation Monte Carlo method is a computational tool for modelling rarefied flows. The Macroscopic Chemistry Method was developed to simplify the modelling of dissociation and recombination reactions in DSMC. The ability to understand and predict the behaviour of chemically reacting, rarefied flows is a critical aspect in the development of high altitude, high speed bodies such as re-entry craft, high altitude aircraft, space transport vehicles and missiles. Computational methods are an invaluable source of information when experimental techniques are difficult, costly or time-consuming. However, traditional methods of modelling chemical kinetics using DSMC suffer from a number of drawbacks. The Macroscopic Chemistry Method overcomes a number of these problems, but has previously only been applied to simulations of a single diatomic gas. The Macroscopic Chemistry Method (MCM) is extended to consider multiple species and multiple reaction sets, thermal non-equilibrium effects, trace species modelling, unsteady flows, vibrational state specific chemistry, electronic excitation, relaxation and ionization and coupled nonequilibrium radiation emission. The Macroscopic Method is described as a general DSMC modelling philosophy rather than as a single formulated method. That is, the flexibility and utility of the method are shown through examples of applying a macroscopic approach to a number of problems, and by highlighting instances where a macroscopic approach is useful or even necessary. The problems investigated include reservoir relaxation calculations, 1-D shock, expansion and shock-expansion calculations, two-dimensional flows over a vertical step and through a cavity, and axis-symmetric flow about a sphere. The studies demonstrate that although MCM may often present a simplified approach as compared to traditional 'non-macroscopic' methods, it does not necessarily lead to more approximate solutions. On the contrary, the ability of macroscopic methods to combine different models of physical processes with the most recent (verified) data means that they are particularly suited to simulate high altitude, rarefied flows. It is also shown that, like any model approach, the validity of the approximations employed must be justified for a particular problem. In general, macroscopic methods of varying complexity and accuracy may be implemented to model a specific physical process. Adoption of the Macroscopic Chemistry Method in DSMC has the potential to enhance the modelling of chemical kinetics, charged-particle effects and radiation in rarefied hypersonic flows. This capability may be attributed to the simplicity and flexibility which the macroscopic approach affords over methods which seek to avoid the use of collective information. Macroscopic methods have already been employed to model weakly ionized flows. Their further application to model chemical kinetics and other processes would be useful for modelling and understanding the behaviour of objects in rarefied hypersonic flow-fields.
393

Particle Dynamics In A Turbulent Particle-Gas Suspension At High Stokes Number

Goswami, Partha Sarathi 03 1900 (has links)
Particle laden turbulent flows find applications in many industrial processes such as energy conversion, air pollution control etc. In these types of flows, there are strong coupling between the turbulent fluctuations in the fluid velocity fields, and the fluctuating velocities of the particles. In order to analyze the stresses and the heat and mass transfer properties in turbulent suspensions, it is necessary to have a good understanding of not just the mean flow of the gas and particles, but also of the fluctuations in the two phases. The coupling is a two-way coupling; the fluid turbulence contributes to the velocity fluctuations in the particles, and conversely, the particle velocity fluctuations generate fluctuations in the fluid. Two-phase flow models capture these interactions only in an indirect way, usually through a ‘particle pressure’ term for the particle phase. In the present work the effect of fluid velocity fluctuations on the dynamics of the particles in a turbulent gas-solid suspension is analyzed in the low Reynolds number and high Stokes number limit, where the particle relaxation time is long compared to the correlation time for the fluid velocity fluctuations. The direct numerical simulation (DNS) is used for solving the Navier-Stokes equations for the fluid, the particles are modeled as hard spheres which undergo elastic collisions. A one-way coupling algorithm is used where the force exerted by the fluid on the particles is incorporated, but not the reverse force exerted by the particles on the fluid. This is because the main focus of our study is to examine the effect of the fluid turbulence on the particle fluctuations, and we are interested in examining whether a Langevin model with random forcing can accurately capture the effect of fluid turbulence on the particle phase. First, the turbulent flow in a plane Couette is analyzed. Though this is a model flow which is not encountered often in applications, it is easier to analyze because the turbulent velocity fluctuations are maximum at the center of the channel, in contrast to the Poiseuille flow, where the velocity fluctuations are maximum at a location between the center and the wall. Also, in a Couette flow, the wall-normal and the spanwise root mean square velocities are nearly a constant in the central region in the channel, and the percentage variation in the stream-wise velocity fluctuations is also less than that in a pressure driven Poiseuille flow. Therefore, it is possible to treat the central region as a region with homogeneous, but anisotropic, fluid velocity fluctuations and with a linear mean velocity variation. The particle mean and root mean square fluctuating velocities, as well as the probability distribution function for the fluid velocity fluctuations and the distribution of acceleration of the particles in the central region of the Couette, which comprises about 20% of the entire channel have been studied. It is found that the distribution of particle velocities is very different from a Gaussian, especially in the span-wise and wall-normal directions. However, the distribution of the acceleration fluctuation on the particles is found to be close to a Gaussian, though the distribution is highly anisotropic and there is a correlation between the fluctuations in the flow and gradient directions. The non-Gaussian nature of the fluid velocity fluctuations is found to be due to inter-particle collisions induced by the large particle velocity fluctuations in the flow direction. Another interesting result is a comparison of the distribution of the acceleration on a particle due to the fluid velocity fluctuation at the particle position, and the distribution of the ratio of fluid velocity fluctuation to the viscous relaxation time in the fluid. The comparison shows that these two distributions are almost identical, indicating that the fluid velocity fluctuations are not correlated over time scales comparable to the relaxation time of a particle. This result is important because it indicates that in order to model the fluctuating force on the particle, it is sufficient to obtain the variance of the force distribution from the variance of the fluid velocity distribution function. Finally, the correlation time for the acceleration correlations is calculated along the trajectory of a particle. The correlation time is found to be of the same magnitude as the correlation time for the fluid velocity in an Eulerian reference frame, and much smaller than the viscous relaxation time and the time between collisions of the particles. All of these results indicate that the effect of the turbulent fluid velocity fluctuations can be accurately represented by an anisotropic Gaussian white noise. The above results are used to formulate a ‘fluctuating force’ model for the particle phase alone, where the force exerted by the fluid turbulent velocity fluctuations is modeled as random Gaussian white noise, which is incorporated into the equation of motion for the particles. The variance of the distribution function for the fluctuating force distribution is obtained from the variance of the local turbulent fluid velocity fluctuations, assuming linear Stokes drag law. The force distribution is anisotropic, and it has a non-zero correlation between the flow and gradient directions. It is found that the results of the fluctuating force simulations are in quantitative agreement with the results of the complete DNS, both for the particle concentration and variances of the particle velocity fluctuations, at relatively low volume fractions where the viscous relaxation time is small compared to the time between collisions, as well as at higher volume fractions where the time between collisions is small compared to the viscous relaxation time. The simulations are also able to predict the velocity distributions in the center of the Couette, even in cases where the velocity distribution is very different from a Gaussian distribution. The fluctuating force model is applied to the turbulent flow of a gas-particle suspension in a vertical channel in the limit of high Stokes number. In contrast to the Couette flow analyzed the fluid velocity variances in the different directions in the channel are highly non-homogeneous, and they exhibit a significant variation across the channel. First, we analyze the fluctuating particle velocity and acceleration distributions at different locations across the channel using direct numerical simulation. The distributions are found to be non-Gaussian near the center of the channel, and they exhibit significant skewness. The time correlations of the fluid velocity fluctuations and the acceleration fluctuations on the particles are evaluated and compared. Unlike the case of Couette flow it is found that the time correlation functions for the fluid in the fixed Eulerian frame are not in agreement with the time correlation of the acceleration on the particles. However, the time correlations of the particle acceleration are in good agreement with the velocity time correlations in the fluid in a ‘moving Eulerian’ reference frame, moving with the mean velocity of the fluid. The fluctuating force simulations are used to model the particle phase, where the force on the particles due to the fluid velocity fluctuations are substituted by random white noise in the equations for the particle motion. The random noise is assumed to be Gaussian and anisotropic. The variances of the fluctuating force are calculated form the fluid velocity fluctuations in a moving Eulerian reference frame using DNS. The results from the fluctuating force simulations are then compared with the results obtained from DNS. Quantitative agreement between the two simulations are obtained provided the particle viscous relaxation time is at least five times larger than the fluid integral time. The interactions between the solid particles and the fluid turbulence have been investigated experimentally in a vertical fully developed channel flow of air and solid particles. Experiments are conducted at low volume fraction for which viscous relaxation time of the particle is expected to be lower than the particle particle collision time, as well as at moderately high volume fraction where the particle particle collision time is expected to be lower than the particle relaxation time. Velocity statistics of both the particle and gas phases are obtained using high spatial resolution Particle Image Velocimetry (PIV) system. It is observed that at low solid volume fraction, the particle root mean square velocities and the velocity distribution are in good agreement with those predicted by the fluctuating force simulation, provided the polydispersity in the particle size distribution is incorporated in the fluctuating force simulations. In this case, the modification of turbulence in the center of the channel due to the particles is small. At much higher volume fraction, the mean gas flow is significantly affected by the presence of particles, and the mean flow is no longer symmetric about the center line of the channel. Simultaneously, there is also a significant change in the volume fraction across the channel, and the volume fraction is also not symmetric about the center line. This seems to indicate that there is a spontaneous instability of the symmetric volume fraction and velocity profiles, giving rise to a region of high fluid velocity and high particle volume fraction coexisting with a region of low gas velocity and low particle volume fraction. There is some recirculation of the gas within the channel, and the gas phase turbulence intensity is significantly enhanced when the velocity and volume fraction profiles become asymmetric. As we have considered only one way coupling in the computation of the particle laden flow it is expected that the particle statistics obtained for this condition can not be predicted by our fluctuating force model due to modification of the gas phase statistics.
394

On Turbulent Rayleigh-Bénard Convection in a Two-Phase Binary Gas Mixture

Winkel, Florian 27 October 2014 (has links)
No description available.
395

Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines

Deglaire, Paul January 2010 (has links)
Wind power is a renewable energy source that is today the fastest growing solution to reduce CO2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed rotor ranging from 2 kW to 20 kW. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 704
396

Flow-Recruitment Relationships of Smallmouth Buffalo (Ictiobus bubalus) in Three Texas River Basins

Reeves, Cole Griffin 08 1900 (has links)
This project focused on the relationship between instream flows and smallmouth buffalo (Ictiobus bubalus) recruitment in the Gulf Coastal Plain of Texas. The flow regime is the dominant factor in lotic systems and, consequently, the relationship between instream flows, including impacts to natural flow regimes, and life-history is a subject of growing interest. Smallmouth buffalo is a good model to investigate the relationship between river flows and variable interannual recruitment success of periodic life-history strategist fish species. Smallmouth buffalo were collected from the Brazos, Colorado, and Guadalupe Rivers of Texas, U.S.A., and otoliths were extracted from individuals in the field and sectioned and photographed in the lab. Photographs of sectioned otoliths were used to estimate age and thus the year in which the individual was spawned by counting back from the time of capture. Population age structure (i.e. a ‘state' or condition at a point in time) was used to infer effects of flow variation on a rates-based process (i.e. recruitment). After controlling for mortality using recruitment index values, interannual variation in recruitment was modeled using multiple components of the flow regime quantified as indicators of hydrologic alteration (IHA) variables based on daily discharge data from USGS gaging stations in each river system. Model selection followed a two-tier approach, first fitting models using only flow attributes associated with the spawning season then adding additional informative parameters from the pre-spawn and post-spawn periods. The primary finding from model selection was that duration of high flow pulses during the spawning season is a critical component of the flow regime associated with successful Smallmouth Buffalo recruitment. These findings have implications for river management and conservation of ecological integrity, in particular populations of periodic life-history strategist species.
397

Some aspects of the dynamics of rotating, stratified and shear flows : astrophysical and geophysical applications / Quelques aspects de la dynamique d'un fluide stratifié en rotation et / ou cisaillé : applications astrophysiques et geophysiques

Facchini, Giulio 19 December 2017 (has links)
Ce travail de thèse cherche à caractériser, à l'aide d’expériences de laboratoire, le mouvement d'un fluide stratifié à la fois tournant et cisaillé. Dans ce contexte on a considéré trois problèmes qui sont issus des observations géophysiques et astrophysiques où ces écoulements sont très communs. En premier nous avons observé expérimentalement et modélisé l'évolution en temps d'un anticyclone en milieu stratifié tournant, dans le but de comprendre la longévité des meddies, des vortex qui se forment à la sortie de la Méditerranée et peuvent perdurer pendant des années. Nos anticyclones modèles montrent une relaxation visqueuse anormale en raison de l’interaction entre stratification et cisaillement. Nos résultats expérimentaux ont été confirmés à l'aide d'un modèle géostrophique et de simulations numériques qui montrent aussi le rôle majeur joué par les circulations secondaires. Dans un deuxième temps nous avons considéré la stabilité linéaire de l'écoulement de Couette Plan, un des plus simple des écoulement plans cisaillés. On montre que cet écoulement devient instable lorsque l'on ajoute de la stratification verticale. Nous remarquons aussi que la structure spatiale de l'instabilité ressemble à celle de certains jets océaniques que l'on observe près de l'équateur. Enfin nous avons caractérisé une instabilité non linéaire dite des zombie vortex qui a été récemment découverte et pourrait jouer un rôle fondamental dans la déstabilisation des disques d'accrétion, une étape fondamentale de la formation des planétaire. Nous avons construit le diagramme de stabilité de la ZVI dans l'espace de trois fréquences caractéristiques et quantifié la dissipation visqueuse. / The present PhD work comes with the scope of characterizing, analysing and modelling some laboratory flows in the simultaneous presence of rotation, stratification and shear. To this aim we address three specific questions inspired by geophysics and astrophysics where these three ambient features are commonly relevant. First we characterize and model the time evolution of a compact anticyclone in a rotating and stratified laboratory flow. We aim to understand the longevity of analogous vortices known as meddies which populate the Atlantic ocean at the exit of the Mediterranean sea. We observe that viscous relaxation happens in an unusual way because of the balance between rotation and stratification. The results are confirmed by a quasi-geostrophic model and numerical simulations which show the crucial role played by secondary circulations. Secondly we consider the linear stability of one of the simplest parallel shear flow, namely the plane Couette Flow, and show that it becomes unstable when adding a vertical stratification. Interestingly the unstable pattern reminds of deep oceanic jets observed close to the equator. The signature of this instability is observed in an ad-hoc experimental flow and interpreted with the support of direct numerical simulations. Finally we characterize the behaviour of a recently disclosed finite amplitude instability, namely the zombie vortex instability or ZVI. This instability appears when rotation, stratification and shear are of the same order and may may destabilize proto-planetary disks. We construct a stability diagram for ZVI in the space of the three ambient frequencies and analyse the effect of viscous dissipation.
398

Aplicações de Campos de Jacobi aos sistemas dinâmicos

Silva Filho, Paulo Cesar Ignácio da 24 February 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-07-08T13:38:37Z No. of bitstreams: 1 paulocesarignaciodasilvafilho.pdf: 478866 bytes, checksum: 883dfa24e474221cdd52a8dc34720114 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-13T16:32:06Z (GMT) No. of bitstreams: 1 paulocesarignaciodasilvafilho.pdf: 478866 bytes, checksum: 883dfa24e474221cdd52a8dc34720114 (MD5) / Made available in DSpace on 2016-07-13T16:32:06Z (GMT). No. of bitstreams: 1 paulocesarignaciodasilvafilho.pdf: 478866 bytes, checksum: 883dfa24e474221cdd52a8dc34720114 (MD5) Previous issue date: 2012-02-24 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Esta dissertação é dedicada ao estudo de Aplicações de Campos de Jacobi aos Sistemas Dinâmicos, seguindo alguns trabalhos desenvolvidas por [6] que utilizam tais campos para caracterizar fluxos geodésicos do tipo Anosov. Em seguida foram desenvolvidas alguns conceitos envolvendo Fluxo Magnético com o trabalho de Gabriel P. Paternain e Keith Burns [2] e por último foram desenvolvidos aplicações de tais campos para a dinâmica do Bilhar [14]. / This dissertation treat the study of Aplications of Jacobi Fields in the Dinamycal System, following some works by [6], that use these fields to characterizae geodesic flows of Anosov type. Then such apllications have been developed some concepts concerning Magnetic Flows with the work of Gabriel P. Paternain e Keith Burns [2] and were finally developed for the dynamic Billiards [14].
399

Constrained local universe simulations from galaxy peculiar velocities / Conditions initiales à partir de vitesse particulières observées pour les simulations

Doumler, Timur 22 June 2012 (has links)
Les vitesses particulières de galaxies fournissent des informations importantes sur notre mouvement par rapport aux grandes structures observées et peuvent être utilisées afin de contraindre la distribution de matière noire sous-jacente. En ce basant sur cette approche, la technique des réalisations contraintes permet de calculer des simulations numériques qui ressemblent à l'Univers Local observé. Ceci fourni un laboratoire numérique puissant pour étudier la dynamique, la formation et l' évolution des structures bien connues de l'Univers Local. L' étape cruciale est de générer, à partir des données observationnelles, des conditions initiales appropriées. Nous présentons ici des améliorations de la technique des simulations contraintes, accompagnées d'un code numérique nouvellement développé et hautement optimisé, qui peut ingérer les énormes ensemble de données observationnelles. Les galaxies évoluent à partir du collapse gravitationnel des surdensités primordiales de l'univers très jeune; leurs mouvements créent un champ de déplacement à grande échelle. Une source majeure d'erreurs systématiques dans les simulations contraintes est produite si l'on ne tient pas compte de cet effet. Afin de dépasser cette limitation, nous avons développé la méthode de reconstruction par approximation inverse de Zeldovich (RZA). La RZA permet de reconstruire les déplacements et les positions initiales des galaxies observées et de générer une estimation significativement meilleure des conditions initiales de l'Univers Local. Cette méthode est intensivement testée sur des données de simulations. Nous étudions aussi l'influence de la qualité des données et de diverses erreurs observationnelles et/ou systématiques. Nous démontrons qu'avec la technique RZA, la qualité de la reconstruction des champs de densité et de vitesse est drastiquement améliorée. La position des objets dans les simulations contraintes évoluées sont retrouvées plus précisément et sur un plus grand intervalle de masses / Galaxy peculiar velocities provide valuable information about our motion with respect to theobserved large-scale structure and can be used to constrain the underlying dark matter distribution.Based on this approach, the technique of constrained realisations allows us to run numericalsimulations that resemble the observed Local Universe. This provides a powerful numerical laboratoryto study the dynamics, formation and evolution of structure in the Local Universe. Thecrucial step is to generate appropriate initial conditions from the observational data.We present here improvements on the technique of constrained simulations, along with anewly developed highly optimised numerical code that can handle the upcoming large observationaldatasets. Galaxies evolve from the gravitational collapse of primordial overdensities in theearly Universe; their motion leads to a large-scale displacement field. A major source of systematicerrors in constrained simulations arises by not accounting for this effect. To overcome thislimitation, we develop the Reverse Zeldovich Approximation (RZA) reconstruction method. TheRZA allows to reconstruct displacements and initial positions of observed galaxies and generatea significantly better estimate of the initial conditions of the Local Universe. This method isextensively tested on simulation data. We also study the influence of data quality and variousobservational and systematic errors. We show that with the RZA technique, the reconstructionquality of the density and velocity fields improves significantly. The positions of objects in theevolved constrained simulations are recovered more accurately and over a wider range of masses. / Die Pekuliargeschwindigkeiten von Galaxien liefern wertvolle Informationen über ihre Bewegungrelativ zu den beobachteten großräumigen Strukturen und können verwendet werden, um diezugrundeliegende Verteilung der dunklen Materie abzuschätzen. Auf dieser Grundlage könnenmit der Methode der “Constrained Realisations” numerische Simulationen durchgeführt werden,die die Materieverteilung im Lokalen Universum widerspiegeln und somit leistungsfähige numerischeExperimente ermoeglichen, um die Dynamik, Entstehung und Evolution von Strukturenim lokalen Universum zu untersuchen. Eine wichtige Voraussetzung für diese Experimente ist es,korrekte Anfangsbedingungen aus den Beobachtungsdaten abzuleiten.In dieser Arbeit werden Verbesserungen der “Constrained Simulations”-Technik sowie ein fürdiesen Zweck neu entwickelter, hochgradig optimierter numerischer Code vorgestellt, welcheres ermöglicht, die kommenden, sehr umfangreichen Beobachtungsdaten zu verarbeiten. Galaxienentwickeln sich aus dem Gravitationskollaps von primordialen Überdichten im frühen Universum.Deren Bewegung führt zu einer großräumigen Dislokation, deren Vernachlässigung die größtesystematische Fehlerquelle für “Constrained Simulations” darstellt. An dieser Stelle knüpft dieReverse-Zeldovich-Näherung (RZA) an, die hier vorgestellt wird. Mithilfe der RZA können wirdiese Dislokation abschätzen und somit die ursprünglichen Positionen der beobachteten Galaxienrekonstruieren. Dadurch erhält man wesentlich genauere Anfangsbedingungen fuer die Entwicklungdes Lokalen Universums. Diese Methode wird ausführlich an Simulationsdaten getestet.Der Einfluß der Datenqualität und verschiedener Beobachtungs- und systematischer Fehler wirdeingehend untersucht. Die Rekonstruktionsgenauigkeit der Dichte- und Geschwindigkeitsfelderkann durch den Einsatz der RZA signifikant erhöht werden. In unseren Tests stimmen die Positionenvon Objekten in den mit RZA erzeugten “Constrained Simulations” wesentlich besser mitden ursprünglichen überein, als ohne die RZA, und das für einen deutlich größeren Bereich vonMassen
400

An Investigation of Electric Fields in Sandstorms

Rahman, Mustafa M. 12 1900 (has links)
Sandstorms are frequently accompanied by intense electric fields and lightning. In a very narrow region close to the ground, sand particles undergo a charge exchange during which larger-sized sand grains become positively charged and smaller-sized sand grains become negatively charged and then all particles become suspended by the turbulent fluid motion. Although the association of intense electric fields with sandstorms has long been observed, the mechanism that causes these intense electric fields has not yet been described. Here, we hypothesize that differently sized sand particles are differentially transported by turbulence in the flow, resulting in a large-scale charge separation and a consequential large-scale electric field. To confirm our hypothesis, we combined a large-eddy simulation framework comprising a turbulent atmospheric boundary layer and movement of sand particles with an electrostatic Gauss law to investigate the physics of the electric fields in sandstorms. We varied the strength of the sandstorm from weak to strong as parametrized by the number density of the entrained sand particles. Our simulations reproduced observational measurements of both mean and root mean squared fluctuation values of the electric field. Our results allowed us to propose a law in which the electric field scales to two-thirds of the power of the concentration of the sand particles in weak-to-medium strength sandstorms. The underlying approach to simulate the solid particle-laden flow is Eulerian-Eulerian in which the particles are characterized by statistical descriptors. To explore the essential physics of the electric field generation in a sandstorm, we model the high-Reynolds-number atmospheric boundary-layer (ABL) using two different canonical turbulent flows: one model is that of a turbulent boundary-layer (TBL), and the second one is that of a turbulent half-channel flow. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the abscissas and weights of the quadrature method are tracked directly. The utilization of this framework is proposed to examine the transport of sand in sandstorms. Furthermore, the physical mechanisms necessary for production and sustenance of large-scale electric fields in sandstorms is investigated.

Page generated in 0.0324 seconds