• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 697
  • 345
  • 199
  • 124
  • 67
  • 36
  • 23
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 1864
  • 220
  • 213
  • 205
  • 154
  • 143
  • 136
  • 136
  • 135
  • 129
  • 128
  • 127
  • 118
  • 109
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Numerical simulations of massively separated turbulent flows

El Khoury, George K. January 2010 (has links)
It is well known that most fluid flows observed in nature or encountered in engineering applications are turbulent and involve separation. Fluid flows in turbines, diffusers and channels with sudden expansions are among the widely observed areas where separation substantially alters the flow field and gives rise to complex flow dynamics. Such types of flows are referred to as internal flows since they are confined within solid surfaces and predominantly involve the generation or utilization of mechanical power. However, there is also a vast variety of engineering applications where the fluid flows past solid structures, such as the flow of air around an airplane or that of water around a submarine. These are called external flows and as in the former case the downstream evolution of the flow field is crucially influenced by separation. The present doctoral thesis addresses both internal and external separated flows by means of direct numerical simulations of the incompressible Navier-Stokes equations. For internal flows, the wall-driven flow in a onesided expansion channel and the pressure-driven flow in a plane channel with a single thin-plate obstruction have been studied in the fully developed turbulent state. Since such geometrical configurations involve spatially developing turbulent flows, proper inflow conditions are to be employed in order to provide a realistic fully turbulent flow at the input. For this purpose, a newly developed technique has been used in order to mimic an infinitely long channel section upstream of the expansion and the obstruction, respectively. With this approach, we are able to gather accurate mean flow and turbulence statistics throughout each flow domain and to explore in detail the instantaneous flow topology in the separated shear layers, recirculation regions as well as the recovery zones. For external flows, on the other hand, the flow past a prolate spheroid has been studied. Here, a wide range of Reynolds numbers is taken into consideration. Based on the characteristics of the vortical structures in the wake, the flow past a prolate spheroid is classified as laminar (steady or unsteady), transitional or turbulent. In each flow regime, the characteristic features of the flow are investigated by means of detailed frequency analysis, instantaneous vortex topology and three-dimensional flow visualizations.
82

Lattice Boltzmann Relaxation Scheme for Compressible Flows

Kotnala, Sourabh January 2012 (has links) (PDF)
Lattice Boltzmann Method has been quite successful for incompressible flows. Its extension for compressible (especially supersonic and hypersonic) flows has attracted lot of attention in recent time. There have been some successful attempts but nearly all of them have either resulted in complex or expensive equilibrium function distributions or in extra energy levels. Thus, an efficient Lattice Boltzmann Method for compressible fluid flows is still a research idea worth pursuing for. In this thesis, a new Lattice Boltzmann Method has been developed for compressible flows, by using the concept of a relaxation system, which is traditionally used as semilinear alternative for non-linear hypebolic systems in CFD. In the relaxation system originally introduced by Jin and Xin (1995), the non-linear flux in a hyperbolic conservation law is replaced by a new variable, together with a relaxation equation for this new variable augmented by a relaxation term in which it relaxes to the original nonlinear flux, in the limit of a vanishing relaxation parameter. The advantage is that instead of one non-linear hyperbolic equation, two linear hyperbolic equations need to be solved, together with a non-linear relaxation term. Based on the interpretation of Natalini (1998) of a relaxation system as a discrete velocity Boltzmann equation, with a new isotropic relaxation system as the basic building block, a Lattice Boltzmann Method is introduced for solving the equations of inviscid compressible flows. Since the associated equilibrium distribution functions of the relaxation system are not based on a low Mach number expansion, this method is not restricted to the incompressible limit. Free slip boundary condition is introduced with this new relaxation system based Lattice Boltzmann method framework. The same scheme is then extended for curved boundaries using the ghost cell method. This new Lattice Boltzmann Relaxation Scheme is successfully tested on various bench-mark test cases for solving the equations of compressible flows such as shock tube problem in 1-D and in 2-D the test cases involving supersonic flow over a forward-facing step, supersonic oblique shock reflection from a flat plate, supersonic and hypersonic flows past half-cylinder.
83

Algorithms for Bed Topography Reconstruction in Geophysical Flows

Gessese, Alelign Fekade January 2013 (has links)
Bed topography identification in open channel and glacier flows is of paramount importance for the study of the respective flows. In the former, the knowledge of the channel bed topography is required for modelling the hydrodynamics of open channel flows, fluvial hydraulics, flood propagation, and river flow monitoring. Indeed, flow models based on the Shallow Water Approximation require prior information on the channel bed topography to accurately capture the flow features. While in the latter, usable bedrock topographic information is very important for glacier flow modellers to accurately predict the flow characteristics. Experimental techniques to infer the bed topography are usually used but are mostly time consuming, costly, and sometimes not possible due to geographical restrictions. However, the measurement of free surface elevation is relatively easy. Alternative to experimental techniques, it is therefore important to develop fast, easy-to-implement, and cost-effective numerical methods. The inverse of the classical hydrodynamic problem corresponds to the determination of hydraulic parameters from measurable quantities. The forward problem uses model parameters to determine measurable quantities. New one-shot and direct pseudo-analytical and numerical approaches for reconstructing the channel bed topography from known free surface elevation data is developed for one-dimensional shallow water flows. It is shown in this work that instead of treating this inverse problem in the traditional partial differential equation (PDE)-constrained optimization framework, the governing equations of the direct problem can be conveniently rearranged to obtain an explicit PDE for the inverse problem. This leads to a direct solution of the inverse problem which is successfully tested on a range of benchmark problems and experimental data for noisy and noiseless free surface data. It was found that this solution approach creates very little amplification of noise. A numerical technique which uses the measured free surface velocity to infer the channel bed topography is also developed. The one-dimensional shallow water equations along with an empirical relationship between the free surface and the depth averaged velocities are used for the inverse problem analysis. It is shown that after a series of algebraic manipulation and integration, the equation governing the inverse problem simplifies to a simple integral equation. The proposed method is tested on a range of analytical and experimental benchmark test cases and the results confirm that, it is possible to reconstruct the channel bed topography from a known free surface velocity distribution of one-dimensional open channel flows. Following the analysis of the case of one-dimensional shallow water flows, a numerical technique for reconstructing the channel bed topography from known free surface elevation data for steep open channel flows is developed using a modified set of equations for which the zero-inertia shallow water approximation holds. In this context, the shallow water equations are modified by neglecting inertia terms while retaining the effects of the bed slope and friction terms. The governing equations are recast into a single first-order partial differential equation which describes the inverse problem. Interestingly, the analysis shows that the inverse problem does not require the knowledge of the bed roughness. The forward problem is solved using MacCormack’s explicit numerical scheme by considering unsteady modified shallow water equations. However, the inverse problem is solved using the method of characteristics. The results of the inverse and the forward problem are successfully tested against each other. In the framework of full two-dimensional shallow water equations, an easy-to-implement and fast to solve direct numerical technique is developed to solve the inverse problem of shallow open channel flows. The main underlying idea is analogous to the idea implemented for the case of one-dimensional reconstruction. The technique described is a “one-shot technique” in the sense that the solution of the partial differential equation provides the solution to the inverse problem directly. The idea is tested on a set of artificial data obtained by first solving the forward problem. Glaciers are very important as an indicator of future climate change or to trace past climate. They respond quickly compared to the Antarctica and Greenland ice sheets which make them ideal to predict climate changes. Glacier bedrock topography is an important parameter in glacier flow modelling to accurately capture its flow dynamics. Thus, a mathematical technique to infer this parameter from measured free surface data is invaluable. Analogous to the approaches implemented for open channel flows, easy-to-implement direct numerical and analytical algorithms are developed to infer the bedrock topography from the knowledge of the free surface elevation in one space dimension. The numerical and analytical methods are both based on the Shallow Ice Approximation and require the time series of the ablation/accumulation rate distribution. Moreover, the analytical method requires the knowledge of a non-zero glacier thickness at an arbitrary location. Numerical benchmark test cases are used to verify the suitability and applicability of the algorithms.
84

The spatial autocorrelation problem in spatial interaction modelling: A comparison of two common solutions

Griffith, Daniel, Fischer, Manfred M., LeSage, James P. January 2017 (has links) (PDF)
Spatial interaction models of the gravity type are widely used to describe origin-destination flows. They draw attention to three types of variables to explain variation in spatial interactions across geographic space: variables that characterize the origin region of interaction, variables that characterize the destination region of interaction, and variables that measure the separation between origin and destination regions. A violation of standard minimal assumptions for least squares estimation may be associated with two problems: spatial autocorrelation within the residuals, and spatial autocorrelation within explanatory variables. This paper compares a spatial econometric solution with the spatial statistical Moran eigenvector spatial filtering solution to accounting for spatial autocorrelation within model residuals. An example using patent citation data that capture knowledge flows across 257 European regions serves to illustrate the application of the two approaches.
85

Unstructured mesh based models for incompressible turbulent flows

Manickam, Pradeep January 2013 (has links)
A development of high resolution NFT model for simulation of incompressible flows is presented. The model uses finite volume spatial discretisation with edge based data structure and operates on unstructured meshes with arbitrary shaped cells. The key features of the model include non-oscillatory advection scheme Multidimensional Positive Definite Advection Transport Algorithm (MPDATA) and non-symmetric Krylov-subspace elliptic solver. The NFT MPDATA model integrates the Reynolds Average Navier Stokes (RANS) equations. The implementation of the Spalart-Allmaras one equations turbulence model extends the development further to turbulent flows. An efficient non-staggered mesh arrangement for pressure and velocity is employed and provides smooth solutions without a need of artificial dissipation. In contrast to commonly used schemes, a collocated arrangement for flow variables is possible as the stabilisation of the NFT MPDATA scheme arises naturally from the design of MPDATA. Other benefits of MPDATA include: second order accuracy, strict sign-preserving and full multidimensionality. The flexibility and robustness of the new approach is studied and validated for laminar and turbulent flows. Theoretical developments are supported by numerical testing. Successful quantitative and qualitative comparisons with the numerical and experimental results available from literature confirm the validity and accuracy of the NFT MPDATA scheme and open the avenue for its exploitation for engineering problems with complex geometries requiring flexible representation using unstructured meshes.
86

Studies of hydrogen-air turbulent diffusion flames for subsonic and supersonic flows

Zheng, Li Li January 1993 (has links)
No description available.
87

Hazard assessment on Etna volcano, Italy

Calvari, Sonia January 1998 (has links)
No description available.
88

Circumnuclear regions of barred galaxies

Perez-Ramirez, Dolores January 1999 (has links)
No description available.
89

Laboratory investigations into the threshold of movement of sand-sized sediments

Paphitis, Doros January 2001 (has links)
No description available.
90

Observations and analysis of the Iceland Faeroes Front

Allen, John Taylor January 1996 (has links)
No description available.

Page generated in 0.0314 seconds