Spelling suggestions: "subject:"eyink"" "subject:"elink""
31 |
The rheological properties of letterpress and lithographic inks /Pangalos, George C. January 1983 (has links)
No description available.
|
32 |
Ink film splitting acoustics and tack on paper in offset printingVoltaire, Joakim January 2004 (has links)
<p>This licentiate thesis comprises two complementary studiesdealing with the sheet-fed offset printing of paper. The firststudy addresses the further development of a practical methodto acoustically monitor and analyse the film splitting ofoffset inks. This method was tested on laboratory printingequipment, specifically monitoring the continuous ink splittingin the nip of an IGT ink distribution unit and the short-timeink splitting in the inked print disc-paper nip of the printingunit of an ISIT instrument. The study verified that the inksplitting component of the acoustic signal contributes to thehigher frequency range (10-20 kHz) of the audible spectrum, andcan thus be separated from the lower frequency machine noise.Furthermore, the film splitting component is sensitive tochanges in the ink and printing conditions, thus enabling itsuse in probing the fundamental mechanisms occurring during inktransfer and also suggesting its applicability fornon-intrusive monitoring of industrial printing presses. Anincrease in film thickness during ink distribution correspondsto an increased acoustic power, with the exception of very lowink amounts, which give reduced acoustic emission due to alubricating effect. The effect of the presence of fountainsolution was simulated by adding emulsion-forming, butnon-evaporative, ethylene glycol. This produces an increase inacoustic power at low amounts, due to resistance to glycol dropdeformation, followed by a decrease at higher amounts owing toexcess glycol lining the rolls. During test printing on paper,increasing ink amounts also display an increased acousticresponse.</p><p>The second study further developed a theoretical model toexplain and predict the evolution of ink tack in terms of inksetting directly after offset printing on coated paper. Asmeasured by the ISIT, the tack of the printed ink rises duringshorter time periods, attains a maximum, and then falls atlonger times. The proposed model described how the ink tack,characterised by the impulse during disc pull-off, dependsdynamically on the viscoelastic properties of the ink, thecontact with paper and disc, and the flow geometry. The inksetting was modelled as a diffusion-limited transport of theoil vehicle through the ink film and into the pores of thecoated paper. The coupling of the tack and setting models,compared to the ISIT experimental measurements, then provided adiffusion coeffcient for ink setting during the tack riseperiod. This coeffcient decreases with time, and increasinglyrapidly with decreasing ink amounts due to theconcentration-dependent diffusion. For an accurate descriptionthe elasticity and adhesion effects also have to be considered,at least for explaining the tack fall period.</p>
|
33 |
A study of the effects of paper, ink and drying techniques on lithographic ink transfer during electrophotographic imprinting /Rentschler, Lisa. January 1989 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1989. / Includes bibliographical references.
|
34 |
Ink film splitting acoustics and tack on paper in offset printingVoltaire, Joakim January 2004 (has links)
This licentiate thesis comprises two complementary studiesdealing with the sheet-fed offset printing of paper. The firststudy addresses the further development of a practical methodto acoustically monitor and analyse the film splitting ofoffset inks. This method was tested on laboratory printingequipment, specifically monitoring the continuous ink splittingin the nip of an IGT ink distribution unit and the short-timeink splitting in the inked print disc-paper nip of the printingunit of an ISIT instrument. The study verified that the inksplitting component of the acoustic signal contributes to thehigher frequency range (10-20 kHz) of the audible spectrum, andcan thus be separated from the lower frequency machine noise.Furthermore, the film splitting component is sensitive tochanges in the ink and printing conditions, thus enabling itsuse in probing the fundamental mechanisms occurring during inktransfer and also suggesting its applicability fornon-intrusive monitoring of industrial printing presses. Anincrease in film thickness during ink distribution correspondsto an increased acoustic power, with the exception of very lowink amounts, which give reduced acoustic emission due to alubricating effect. The effect of the presence of fountainsolution was simulated by adding emulsion-forming, butnon-evaporative, ethylene glycol. This produces an increase inacoustic power at low amounts, due to resistance to glycol dropdeformation, followed by a decrease at higher amounts owing toexcess glycol lining the rolls. During test printing on paper,increasing ink amounts also display an increased acousticresponse. The second study further developed a theoretical model toexplain and predict the evolution of ink tack in terms of inksetting directly after offset printing on coated paper. Asmeasured by the ISIT, the tack of the printed ink rises duringshorter time periods, attains a maximum, and then falls atlonger times. The proposed model described how the ink tack,characterised by the impulse during disc pull-off, dependsdynamically on the viscoelastic properties of the ink, thecontact with paper and disc, and the flow geometry. The inksetting was modelled as a diffusion-limited transport of theoil vehicle through the ink film and into the pores of thecoated paper. The coupling of the tack and setting models,compared to the ISIT experimental measurements, then provided adiffusion coeffcient for ink setting during the tack riseperiod. This coeffcient decreases with time, and increasinglyrapidly with decreasing ink amounts due to theconcentration-dependent diffusion. For an accurate descriptionthe elasticity and adhesion effects also have to be considered,at least for explaining the tack fall period.
|
35 |
An experimental and analytical investigation of screen printing process fundamentalsMitchell, M. C. January 1999 (has links)
No description available.
|
36 |
疑問水墨: 香港當代水墨創作初探. / Wondering ink art: the introduction of the study of Hong Kong contemporary ink art / 香港當代水墨創作初探 / CUHK electronic theses & dissertations collection / Yi wen shui mo: Xianggang dang dai shui mo chuang zuo chu tan. / Xianggang dang dai shui mo chuang zuo chu tanJanuary 2013 (has links)
黃綺琪. / "2013年9月". / "2013 nian 9 yue". / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in Chinese and English. / Huang Qiqi.
|
37 |
Inkjet printing of buffer and superconducting layers for YBa₂Cu₃O₇₋x coated conductorsMosiadz, Mariusz January 2012 (has links)
No description available.
|
38 |
New coloration system for ink jet printing on textilesLi, Xiaofei January 1997 (has links)
No description available.
|
39 |
A study of how coated paper's roughness, gloss and absorptivity affect on SID and print gloss /Ho, Jimmy Jeng-Rung. January 1991 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1991. / Includes bibliographical references (leaves 132-134).
|
40 |
A study of ink trapping comparing gravimetric and desitometric methods of measurement /Hsu, Jui-lin. January 1989 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1989. / Includes bibliographical references (leaves 95-97).
|
Page generated in 0.0397 seconds