131 |
Rare earth metal boryl and gallyl compounds : synthesis and reactivitySaleh, Liban Mohamoud Ali January 2014 (has links)
This Thesis describes the syntheses, characterisation and reactivity of rare earth metal boryl and gallyl compounds. Experimental and computational studies were performed to investigate the structure and bonding in these compounds. <b>Chapter 1</b> introduces key metal-boryl and metal-gallyl compounds of the s, p, d and f-blocks via literature review. <b>Chapter 2</b> describes the syntheses, structures and bonding analyses of rare earth metal boryl compounds. A short introduction to rare earth metal cations is given. Chapter 3</b> describes the syntheses, structures and bonding analyses of rare earth metal gallyl compounds. The preparation of a new class of rare earth metal cations will also be reported. A short introduction to rare earth metal amidinates is given. <b>Chapter 4</b> presents reactivity studies of the rare earth metal gallyl compounds described in Chapter 3. To facilitate a direct structure and reactivity comparison, the corresponding boryl compounds were also synthesised. The results of a comprehensive DFT computational study to investigate the structure and bonding in these compounds are also presented. A short introduction to metalelement and metalmetal bond reactivity is given. <b>Chapter 5</b> presents full experimental procedures and characterising data for the new compounds reported. <b>Appendix<b> <b>CD Appendix</b> contains .cif files for all new crystallographically characterised compounds described.
|
132 |
Electron resonance absorption in metals at centimetre wavelengthsLiesegang, J. January 1965 (has links)
No description available.
|
133 |
Investigations into the Effects of Water Exchange and the Structure of Lanthanide ChelatesPayne, Katherine Marie 05 December 2016 (has links)
Lanthanide chelates are effective agents for improving contrast in MR images. Optimizing the relaxation of inner sphere water molecules is a common focus of research in this field. However, the efforts to design an optimal contrast agent have commonly over-looked the relationship of water position and water exchange kinetics. This work explores structural conformation, the impact of very fast water exchange kinetics on hydration, and differing tumbling rates for regioisomers of a number of lanthanide chelates. We have grown crystals of LnDOTMA and obtained structural data by X-ray diffraction that provide a picture of the chelate during water exchange and demonstrate that chelate conformation is associated with water position. We observe increased population of the major isomer with increased water exchange rates in variable temperature 1H NMR studies of HoDOTMA. This suggests that water position and water exchange rates are linked. We therefore recommend that accurate water exchange data be included in the application of the SBM equations when interpreting experimental data. As further support of this recommendation, we measured water exchange kinetics with 17O NMR for the rigid GdNB-DOTMA chelates. These results were used in the fitting of 1H NMRD profiles to establish tumbling parameters. Similar results were also observed in the less rigid GdNB-DOTA, establishing the first identification of regioisomers in these chelates and their biphenyl derivatives. Binding studies of GdBP-DOTA indicate that the side isomer is a more effective agent, but it is the minor species in solution. Our work herein shows that predicting efficacy of contrast agents with SBM equations requires a more complete consideration of chelate hydration (q/r6).
|
134 |
Solid-State Nuclear Magnetic Resonance of Exotic Quadrupolar Nuclei as a Direct Probe of Molecular Structure in Organic Ionic SolidsBurgess, Kevin January 2015 (has links)
In the past decade, the field of NMR spectroscopy has seen the emergence of ever more powerful superconducting magnets, which has opened the door for the observation of many traditionally challenging or non-receptive nuclei. In this dissertation, a variety of ionic solids with organic coordination environments are investigated using quadrupolar solid-state NMR experiments with an ultrahigh-field magnet (21.1 T). Two general research directions are presented including a 79/81Br solid-state NMR study of a series of 6 triphenylphosphonium bromides for which single-crystal X-ray structures are reported herein. A second research direction is also presented wherein alkaline-earth metal (25Mg, 43Ca, and 87Sr) solid-state NMR is used to characterize a systematic series of 16 aryl and alkyl carboxylates. In both studies, the quadrupolar nuclei studied are deemed “exotic” due to their unreceptive nature to NMR spectroscopic analysis including low natural abundances, large quadrupole moments, or low resonance frequencies. A variety of coordination modes to alkaline-earth metals, including N-atom coordination, are characterized herein for the first time using alkaline-earth metal solid-state NMR. In all cases, the electric field gradient (EFG) and chemical shift (CS) tensors are characterized and correlated to structural features such as interatomic distances measured from the crystal structure of the compound under study.
In all of the projects undertaken herein, the gauge-including projector-augmented-wave density functional theory (GIPAW DFT) method is used, which allows for the prediction and rationalization of the experimental EFG and CS tensor parameters based on the input crystal structure. In the case of 43Ca solid-state NMR experiments reported in this dissertation, a linear correlation between the calculated and experimental 43Ca quadrupolar coupling constants, CQ, is used as a calibration curve for GIPAW DFT calculations performed on the 18 structural models currently available for the vaterite polymorph of CaCO3. Vaterite cannot be fully characterized by X-ray diffraction alone; therefore an NMR crystallography protocol is used in order to identify the model that best accounts for 43Ca solid-state NMR experiments performed on vaterite. It is expected that the conclusions from this dissertation can be used for future studies involving structural refinement and elucidation of solid materials containing challenging quadrupolar nuclei.
|
135 |
Sensitization of Lanthanides and Organic-Based Phosphorescence via Energy Transfer and Heavy-Atom EffectsArvapally, Ravi K. 05 1900 (has links)
The major topics discussed are the phosphorescence sensitization in the lanthanides via energy transfer and in the organics by heavy atom effects. The f-f transitions in lanthanides are parity forbidden and have weak molar extinction coefficients. Upon complexation with the ligand, ttrpy (4'-p-Tolyl-[2,2':6',2"]-terpyridine) the absorption takes place through the ligand and the excitation is transferred to the lanthanides, which in turn emit. This process is known as "sensitized luminescence." Bright red emission from europium and bright green emission from terbium complexes were observed. There is ongoing work on the making of OLEDs with neutral complexes of lanthanide hexafluoroacetyl acetonate/ttrpy, studied in this dissertation. Attempts to observe analogous energy transfer from the inorganic donor complexes of Au(I) thiocyanates were unsuccessful due to poor overlap of the emissions of these systems with the absorptions of Eu(III) and Tb(III). Photophysics of silver-aromatic complexes deals with the enhancement of phosphorescence in the aromatics. The heavy atom effect of the silver is responsible for this enhancement in phosphorescence. Aromatics such as naphthalene, perylene, anthracene and pyrene were involved in this study. Stern Volmer plots were studied by performing the quenching studies. The quenchers employed were both heavy metals such as silver and thallium and lighter metal like potassium. Dynamic quenching as the predominant phenomenon was noticed.
|
136 |
Spatially Explicit Assessment of Environmental Impacts in the Electronics SectorKali Diane Frost (11813585) 09 December 2021 (has links)
<div>As society rapidly migrates to digitized services, the Information, Communications, and Technology (ICT) sector is projected to sustain a 16% compound annual growth rate (CAGR) over the next five years, surpassing $1 trillion in revenue by 2024. The hardware infrastructure that supports ICT growth, such as semiconductor chips and hard disk drives (HDDs), is also experiencing parallel growth trajectories. Thus, large technology companies need to understand the environmental implications of growth in these vital components within their supply chains, as they strive to reach ambitious targets for carbon, water, and waste reduction.</div><div><br></div><div>Life cycle assessment (LCA) is a powerful tool for measuring environmental impacts along the life cycle of a product and is implemented here to measure emissions and resource use in the semiconductor and HDD manufacturing supply chains, and to quantify the benefits of circularity for HDD components. However, to understand how environmental impacts of a manufacturing process relate to the landscapes (i.e. ecosystems) where manufacturing occurs, one must look to methods beyond LCA. </div><div><br></div><div>Footprinting methods are a promising tool for bridging the gap between LCA process data inventories and site-specific impacts on ecosystems. Further, the footprint assesses the total volume of emission over a time period, which is aligned with the concept of absolute sustainability. As such, regionalized footprint methods for freshwater use in the semiconductor industry and toxic chemical pollution for the HDD rare earth magnet supply chain were undertaken. In each case, data from the LCA literature or custom LCAs were used as the basis for the life cycle inventory, but advanced methods including regional databases of water scarcity and toxicity factors were used to quantify and communicate impacts. Further, geographic information systems (GIS) were used to allocate emissions or water use from a manufacturing facility with their associated watershed, which enabled aggregation of data across various geographies (i.e. watershed, region, country). </div><div><br></div><div>This work implements multi-disciplinary methods, databases, and tools with the aim to bring water and chemical footprinting methods a step closer towards meaningful assessment of a product’s impact on local, regional, and planetary boundaries. </div><div><br></div>
|
137 |
Toward lanthanide containing coordination polymers and nanomaterialsUnknown Date (has links)
The focus of this thesis is to develop lanthanide (Ln) luminescent materials through the exploration of coordination polymers and nanomaterials. Herein, dimethyl-3,4- furanedicarboxylate acid undergoes hydrolysis under hydrothermal conditions to form coordination polymers with lanthanide ions. The resulting coordination polymers exhibited luminescent properties, with quantum yields and lifetimes for the Eu-and Tb-CP of 1.14+-0.32% and 0.387=-0.0001 mx, and 3.33=-0.82% and 0.769=-0.006 ms, respectively. While the incorporation of lanthanides was not achieved in this work, progress toward the production of pure phase InP in the nanoregime has been made, using a low-cost, hydrothermal method. Through SEM and PXRD conflict, it is believed that pure INP particles with a size range of 58-81 nm were successfully synthesized. / by Natalie E. Greig. / Thesis (M.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
|
138 |
Lanthanide-based nanomaterials for imaging and inhibition of EBV-related cancersZha, Shuai 12 June 2020 (has links)
Nasopharyngeal Carcinoma (NPC) as a typical malignancy that occurs in high-incidence areas, e.g. southern China region, including Hong Kong, and it has aroused wide interests for local researchers to study. The Epstein-Barr virus (EBV) was reported as a vital herpes virus for the growth of NPC. Two significant proteins in EBV, namely Epstein-Barr Nuclear Antigen 1 (EBNA1) and latent infection membrane protein 1 (LMP1) are crucial for virus maintenance and EBV-infected cell development, and essential for cell proliferation and differentiation of EBV latent life cycle, respectively. Thus, inhibition of EBNA1 and LMP1 can be regarded as effective and potent therapy on EBV-associated cancers. In this thesis, the conjugation of core-shell structured upconversion nanoparticles (UCNPs) with distinct EBV-specific peptides including EBNA1 and LMP1 targeting peptides to achieve both impressive inhibition on EBV-positive cancers in vitro/in vivo and visualization on EBV-positive cells with responsive upconversion emission signals were investigated. Taking advantage of lanthanide-based UCNPs, their unique photophysical properties offer deep tissue penetration depth, negligible photobleaching and photocytotoxicity, and therefore provides a solid foundation for convincible theranostic studies. Furthermore, desired inhibitory performance was achieved, it was shown that ~50 mg/mL of nanoprobes can inhibit half of EBV-infected cell viability and only 0.25 mg/tumor of nanoprobes dosage via intravenous injection can prohibit 64.7% of growth inhibition of an EBV-positive tumor
|
139 |
Rare Earth Metals' Resiliency and Volatility Spillover Effects : A Critical Supply Assessment for Western Technologies From a Risk Management PerspectiveEbrahimi, Farzam, Elm, Samuel January 2023 (has links)
This paper explores the relationship between Chinese rare earth metals (REMs) and the industries in the U.S and Europe that heavily rely on them. The study uses the EGARCH(1,1)-ARMA(1,0) process for conditional volatility and incorporates it into VAR(8) framework for forecast error variance decomposition to evaluate the static and dynamic volatility spillovers using daily data from the 2nd of January 2018 to the 3rd of March 2023. The liaison of risk management is also consolidated through the incorporation of Value at Risk and Event Study. Our findings indicate that the volatility interconnectedness between the Chinese REMs market and computer and electronics, electric vehicle, and wind energy industries exhibits relatively low volatility spillover to and from each other. Value at Risk measures suggests complexity in assessing the potential short-term losses for REM equity, leading to difficulties in risk management. Establishing and utilizing a derivatives market could be beneficial for future notice. However, the study also highlights that severe geopolitical risk or conflict could enable extreme levels of financial risk due to the global supply dominance of the Chinese quasi-monopolistic construct and the elements' overall criticality in the sustainable energy transition. The study also highlights the infeasibility of Western nations decoupling themselves from the Chinese REM supply. Various factors such as the pace of advancement in sourcing alternatives, technological advancements, and recycling technology are the main drivers of ineligibility. The forecasted global demand for REMs is also expected to increase significantly, primarily driven by the renewable and sustainable energy transition worldwide, further straining the possibility of independence. Therefore, the pace of advancement of these factors must collectively supersede that of the forecasted demand to mitigate the risk. Keywords: Rare Earth Metals, Interconnectedness, Conditional Volatility, Risk Management, Value at Risk, Event Study.
|
140 |
Density Functional Theory Study Of Molecules And Crystals Containing D And F MetalsGangopadhyay, Shruba 01 January 2011 (has links)
Density Functional Theory (DFT) method is applied to study the crystal structure of transition metal and lanthanide oxides, as well as molecular magnetic complexes. DFT is a widely popular computational approach because it recasts a many-body problem of interacting electrons into an equivalent problem of non-interacting electrons, greatly reducing computational cost. We show that for certain structural properties like phase stability, lattice parameter and oxygen migration energetics pure DFT can give good agreement with experiments. But moving to more sensitive properties like spin state energetic certain modifications of standard DFT are needed. First we investigated mixed ionic-electronic conducting perovskite type oxides with a general formula ABO3 (where A =Ba, Sr, Ca and B = Co, Fe, Mn). These oxides often have high mobility of the oxygen vacancies and exhibit strong ionic conductivity. They are key materials that find use in several energy related applications, including solid oxide fuel cell (SOFC), sensors, oxygen separation membranes, and catalysts. Different cations and oxygen vacancies ordering are examined using plane wave pseudopotential density functional theory. We find that cations are completely disordered, whereas oxygen vacancies exhibit a strong trend for aggregation in L-shaped trimer and square tetramer structure. On the basis of our results, we suggest a new explanation for BSCF phase stability. Instead of linear vacancy ordering, which must take place before the phase transition into brownmillerite structure, the oxygen vacancies in BSCF prefer to form the finite clusters and preserve the disordered cubic structure. This structural feature could be found only in the first-principles simulations and cannot be explained by the effect of the ionic radii alone. In order to understand vacancy clustering and phase iv stability in oxygen-deficient barium strontium cobalt iron oxide (BSCF), we predict stability and activation energies for oxygen vacancy migration. Using symmetry constrained search and Nudged Elastic Band method, we characterize the transition states for an oxygen anion moving into a nearby oxygen vacancy site that is surrounded by different cations and find the activation energies to vary in the range 30-50 kJ/mol in good agreement with experimental data. Next we study spin alignments of single molecule magnets (SMM). SMMs are a class of polynuclear transition metal complexes, which characterized by a large spin ground state and considerable negative anisotropy. These properties lead to a barrier for the reversal of magnetization. For these reasons SMM are expected to be promising materials for molecular spintronics and quantum computing applications. To design SMM for quantum computation, we need to accurately predict their magnetic properties. The most important property is, Heisenberg exchange coupling constant (J). This constant appears in model Heisenberg Hamiltonian that can be written in general form as here Jij represents the coupling between the two magnetic centers i and j with the spin states Si and Sj. The positive J values indicate the ferromagnetic ground state and the negative ones indicate the antiferromagnetic ground state. We found pure DFT is not accurate enough to predict J values. We employ density functionals with a Hubbard U term that helps to counteract the unphysical delocalization of electrons due to errors in pure exchange-correlation functionals. Unlike most previous DFT+U studies, we calibrate U parameters for both metal and ligand atoms using five binuclear manganese complexes as the benchmarks. We note delocalization of the spin density onto acetate ligands due to π-back bonding, inverting spin-polarization of the Jiij −= ∑ S.S.JH v acetate oxygen atoms relative to that predicted from superexchange mechanism. This inversion may affect performance of the models assuming strict localization of the spins on magnetic centers for the complexes with bridging acetate ligands. Next, we apply DFT+U methodology for Mn12(mda) and Mn12(ada) complexes to calculate all six nearest neighbor Jij value. Our result shows both qualitative and quantitative agreement with experiments unlike other DFT studies. Using the optimized geometry of the ground spin state instead of less accurate experimental geometry was found to be crucial for this good agreement. The protocol tested in this study can be applied for the rational design of single-molecule magnets for molecular spintronics and quantum computing applications. Finally we apply hybrid DFT methodology to calculate geometrical parameters for cerium oxides. We review the experimental and computational studies on the cerium oxide nanoparticles, as well as stoichiometric phases of bulk ceria. Electroneutral and nonpolar pentalayers are identified as building blocks of type A sesqioxide structure. The idealized structure of the nanoparticles is described as dioxide covered by a single pentalayer of sesquioxide, which explains the exceptional stability of subsurface vacancies in nanoceria. The density functional theory (DFT) predictions of the lattice parameters and bulk moduli for the Ce(IV) and Ce(III) oxides at the hybrid DFT level are also presented. The calculated values for both compounds agree with experiment and allow to predict changes in the lattice parameter with decreasing size of the nanoparticles. The results validate hybrid DFT as a promising method for future study the structure of oxygen vacancies and catalytic properties of ceria nanoparticles.
|
Page generated in 0.066 seconds