• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineering of Earth-Abundant Electrochemical Catalysts

Rodene, Dylan D 01 January 2019 (has links)
Alternative energy research into hydrogen production via water electrolysis addresses environmental and sustainability concerns associated with fossil fuel use. Renewable-powered electrolyzers are foreseen to produce hydrogen if energy and cost requirements are achieved. Electrocatalysts reduce the energy requirements of operating electrolyzers by lowering the reaction kinetics at the electrodes. Platinum group metals (PGMs) tend to be utilized as electrocatalysts but are not readily available and are expensive. Ni1-xMox alloys, as low-cost and earth-abundant transition metal nanoparticles (NPs), are emerging as promising electrocatalyst candidates to replace expensive PGM catalysts in alkaline media. Pure-phase cubic and hexagonal Ni1-xMox alloy NPs with increasing Mo content (0–11.4%) were synthesized as electrocatalysts for the hydrogen evolution reaction (HER). In general, an increase in HER activity was observed with increasing Mo content. The cubic alloys were found to exhibit significantly higher HER activity in comparison to the hexagonal alloys, attributed to the higher Mo content in the cubic alloys. However, the compositions with similar Mo content still favored the cubic phase for higher activity. To produce a current density of -10 mA/cm2, the cubic and hexagonal alloy NPs require over-potentials ranging from -62 to -177 mV and -162 to -242 mV, respectively. The cubic alloys exhibited over-potentials that rival commercial Pt-based electrocatalysts (-68 to -129 mV at -10 mA/cm2). The cubic Ni0.934Mo0.066 alloy NPs showed the highest alkaline HER activity of the electrocatalysts studied and therefore a patent application was submitted. Bulk Ni–Mo phases have been known as electrocatalysts for the HER for decades, while recently transition metal phosphides (TMPs) have emerged as stable and efficient PGM alternatives. Specifically, Ni2P has demonstrated good HER activity and improved stability for both alkaline and acidic media. However, Ni2P electrocatalysts are a compromise between earth-abundance, performance (lower than Ni–Mo and PGMs) and stability. For the first time Ni–Mo–P electrocatalysts were synthesized with varying atomic ratios of Mo as electrocatalysts for alkaline HER. Specific phases, compositions and morphologies were studied to understand the intrinsic properties of TMPs leading to high HER activity. The Ni1.87Mo0.13P and Ni10.83Mo1.17P5 NPs were shown to be stable for 10 h at –10 mA cm-2 with over-potentials of –96 and –82 mV in alkaline media, respectively. The Ni1.87Mo0.13P and Ni10.83Mo1.17P5 NPs exhibited an improved performance over the synthesized Ni2P sample (–126 mV at –10 mA cm-2), likely a result of the overall phosphorous content and hetero-structured morphologies. A strong correlation between phase dependence and the influence of Mo on HER activity needs to be further investigated. Furthermore, understanding the intrinsic properties of electrocatalysts leading to high water splitting performance and stability can apply electrocatalysts in other research applications, such as photoelectrochemical (PEC) water splitting, water remediation and sustainable chemical processing applications. Contributions to photocatalytic water remediation and electrochemical chlorinated generation to halogenate pyridone-based molecules are reported. Electrochemical techniques were developed and reported herein to aid in understanding electrochemical performance, chemical mechanisms and the stability of electrocatalysts at the electrode-electrolyte interfaces.
2

Síntese e Investigação da Atividade de Eletrocatalisadores Formados por Elementos Abundantes do Tipo M-N-C para a Reação Redução de Oxigênio / Synthesis and Investigation of the electrocatalytic Activity of materials based by Abundant Elements of Type M-N-C for the oxygen reduction reaction

Oliveira, Francisca Elenice Rodrigues de 10 April 2018 (has links)
O desenvolvimento de células de combustível de formato direto encontra obstáculos importantes relacionados com a lenta cinética da reação de redução de oxigênio e baixa tolerância ao formato em cátodos baseados em Pt. Neste estudo, foram sintetizados eletrocatalisadores com diferentes estruturas, formados por elementos abundantes, e suas atividades e seletividades para a RRO foram testadas em meiacélulas e em células unitárias de formato / ar, em eletrólito alcalino. Os resultados mostraram que nanopartículas de liga de ferro-cobalto, encapsuladas por carbono grafítico, e nitretos metálicos nanoestruturados, suportados em carbono, (caracterizados por TEM e XRD) não apresentam atividades eletrocatalíticas superiores ao carbono puro (Vulcan amorfo ou grafitizado). Carbono dopado com nitrogênio (N-C) mostrou um aumento no potencial de meia-onda, evidenciando um influente papel do nitrogênio na eletrocatálise da RRO, mas com alto sobrepotencial. A inserção de oxigênio via tratamento térmico em ar, formando óxidos de FeCo nanoestruturados, suportados por carbono, produziu, como esperado, um aumento considerável na atividade, mostrando que a ligação do ferro ou cobalto com o oxigênio tem papel importante, provavelmente, na alta reatividade redox para a transferência de elétrons para o RRO. A adição de um precursor de nitrogênio durante a síntese (imidazol) resultou na formação de estruturas formadas por átomos de ferro e cobalto, coordenados por nitrogênio, inseridos em uma matriz de carbono, como revelado por EXAFS, mostrou que as estruturas M-N-C têm papel decisivo na atividade eletrocatalítica para a RRO (aproximando-se da Pt/C) e, também, mostrou alta tolerância à presença de íons formato. Experimentos em células a combustível unitárias, com difusão natural de formato e com cátodo aberto ao ar, com elétrodo de difusão de gás, mostraram densidades de potência de 15,5 e 10,5 mW cm-2 com eletrólitos à base de hidróxido e carbonato de potássio, respectivamente, e com estabilidade de operação maior que 120 h a 0,3 mA cm-2. Portanto, os resultados deste trabalho mostram o papel decisivo de estruturas M-NC (coordenadas) na alta atividade para a ORR, em altos potenciais, excluindo-se atividades atribuídas a nanoestruturas de nitretos metálicos e nanopartículas metálicas encapsuladas, incluindo as dopadas por nitrogênio na superfície. / The development of direct formate fuel cells encounters significant obstacles related to the slow kinetics of the oxygen reduction reaction (ORR) and low formate tolerance in Pt-based cathodes. In this study, electrocatalysts with different structures, composed of abundant elements, were synthesized, and their activities and selectivities for the ORR were tested in half-cells and in single cells in alkaline electrolyte. The results showed that carbon-encapsulated nanoparticles of iron-cobalt alloy and carbon-supported nanostructured metal nitrides (characterized by TEM and XRD) do not present electrocatalytic activities superior to pure carbon (amorphous or graphitized Vulcan). Nitrogen-doped carbon (N-C) showed an increase in the halfwave potential, evidencing an influential role of nitrogen in the electrocatalysis of the ORR, but with a high overpotential. The insertion of oxygen through heat treatment in air, forming carbon-supported nanostructured FeCo oxides, produced, as expected, an increase in activity, probably due to the high oxide reactivity for the electronic mediation processes for the ORR. The addition of a nitrogen precursor during the synthesis (imidazole) resulted in the formation of structures formed by iron and cobalt atoms, coordinated by nitrogen, inserted in a carbon matrix, as revealed by EXAFS, and showed that M-N-C structures play a decisive role in the electrocatalytic activity for the ORR (approaching Pt/C) and, also, showed high tolerance to the presence of ions format. Experiments in single cells with air-breathing cathode and with natural diffusion of formate, showed power densities of 15.5 and 10.5 mW cm-2 with hydroxide and carbonate-based electrolytes, respectively, and with operating stability higher than 120 h at 0.3 mA cm-2. Therefore, the results of this work show the decisive role of M-N-C structures (coordination) in the high activity for the ORR, in high potentials, excluding activities attributed to nanostructures of metallic nitrides and encapsulated metallic nanoparticles, including those doped by surface nitrogen.
3

Síntese e Investigação da Atividade de Eletrocatalisadores Formados por Elementos Abundantes do Tipo M-N-C para a Reação Redução de Oxigênio / Synthesis and Investigation of the electrocatalytic Activity of materials based by Abundant Elements of Type M-N-C for the oxygen reduction reaction

Francisca Elenice Rodrigues de Oliveira 10 April 2018 (has links)
O desenvolvimento de células de combustível de formato direto encontra obstáculos importantes relacionados com a lenta cinética da reação de redução de oxigênio e baixa tolerância ao formato em cátodos baseados em Pt. Neste estudo, foram sintetizados eletrocatalisadores com diferentes estruturas, formados por elementos abundantes, e suas atividades e seletividades para a RRO foram testadas em meiacélulas e em células unitárias de formato / ar, em eletrólito alcalino. Os resultados mostraram que nanopartículas de liga de ferro-cobalto, encapsuladas por carbono grafítico, e nitretos metálicos nanoestruturados, suportados em carbono, (caracterizados por TEM e XRD) não apresentam atividades eletrocatalíticas superiores ao carbono puro (Vulcan amorfo ou grafitizado). Carbono dopado com nitrogênio (N-C) mostrou um aumento no potencial de meia-onda, evidenciando um influente papel do nitrogênio na eletrocatálise da RRO, mas com alto sobrepotencial. A inserção de oxigênio via tratamento térmico em ar, formando óxidos de FeCo nanoestruturados, suportados por carbono, produziu, como esperado, um aumento considerável na atividade, mostrando que a ligação do ferro ou cobalto com o oxigênio tem papel importante, provavelmente, na alta reatividade redox para a transferência de elétrons para o RRO. A adição de um precursor de nitrogênio durante a síntese (imidazol) resultou na formação de estruturas formadas por átomos de ferro e cobalto, coordenados por nitrogênio, inseridos em uma matriz de carbono, como revelado por EXAFS, mostrou que as estruturas M-N-C têm papel decisivo na atividade eletrocatalítica para a RRO (aproximando-se da Pt/C) e, também, mostrou alta tolerância à presença de íons formato. Experimentos em células a combustível unitárias, com difusão natural de formato e com cátodo aberto ao ar, com elétrodo de difusão de gás, mostraram densidades de potência de 15,5 e 10,5 mW cm-2 com eletrólitos à base de hidróxido e carbonato de potássio, respectivamente, e com estabilidade de operação maior que 120 h a 0,3 mA cm-2. Portanto, os resultados deste trabalho mostram o papel decisivo de estruturas M-NC (coordenadas) na alta atividade para a ORR, em altos potenciais, excluindo-se atividades atribuídas a nanoestruturas de nitretos metálicos e nanopartículas metálicas encapsuladas, incluindo as dopadas por nitrogênio na superfície. / The development of direct formate fuel cells encounters significant obstacles related to the slow kinetics of the oxygen reduction reaction (ORR) and low formate tolerance in Pt-based cathodes. In this study, electrocatalysts with different structures, composed of abundant elements, were synthesized, and their activities and selectivities for the ORR were tested in half-cells and in single cells in alkaline electrolyte. The results showed that carbon-encapsulated nanoparticles of iron-cobalt alloy and carbon-supported nanostructured metal nitrides (characterized by TEM and XRD) do not present electrocatalytic activities superior to pure carbon (amorphous or graphitized Vulcan). Nitrogen-doped carbon (N-C) showed an increase in the halfwave potential, evidencing an influential role of nitrogen in the electrocatalysis of the ORR, but with a high overpotential. The insertion of oxygen through heat treatment in air, forming carbon-supported nanostructured FeCo oxides, produced, as expected, an increase in activity, probably due to the high oxide reactivity for the electronic mediation processes for the ORR. The addition of a nitrogen precursor during the synthesis (imidazole) resulted in the formation of structures formed by iron and cobalt atoms, coordinated by nitrogen, inserted in a carbon matrix, as revealed by EXAFS, and showed that M-N-C structures play a decisive role in the electrocatalytic activity for the ORR (approaching Pt/C) and, also, showed high tolerance to the presence of ions format. Experiments in single cells with air-breathing cathode and with natural diffusion of formate, showed power densities of 15.5 and 10.5 mW cm-2 with hydroxide and carbonate-based electrolytes, respectively, and with operating stability higher than 120 h at 0.3 mA cm-2. Therefore, the results of this work show the decisive role of M-N-C structures (coordination) in the high activity for the ORR, in high potentials, excluding activities attributed to nanostructures of metallic nitrides and encapsulated metallic nanoparticles, including those doped by surface nitrogen.

Page generated in 0.0731 seconds