• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 708
  • 78
  • 21
  • 17
  • 16
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1190
  • 362
  • 236
  • 219
  • 215
  • 183
  • 175
  • 148
  • 136
  • 119
  • 116
  • 113
  • 80
  • 80
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

An information-theoretical approach to identify seismic precursors and earthquake-causing variables

Lopes da Silva Valencio, Arthur January 2018 (has links)
Several seismic precursors and earthquake-causing variables have been proposed in the last decades based on physical considerations and case observations, however none has been confirmed on long datasets using linear analysis. This work adopts an information-theoretical approach to investigate the occurrence of causal flow between these precursors and causing variables and seismicity. It starts by introducing the key concepts in seismology and presenting the current main precursor candidates. Four variables will be considered as possible precursors or anomalies leading to earthquakes: large tidal amplitudes, temporal fluctuations in the Gutenberg-Richter's b-value, surface gravity changes, and preceding anomalous seismicity patterns. To perform the causality test between these variables and their effects, it is developed a method which allows the fast calculation of Transfer Entropy for any two time-series, detecting the direction of the flow of information between the variables of interest. The method is tested to coupled logistic maps and networks with different topologies before application to geophysical events. The analysis shows mutual information relating to coupling strength and also allows inference of the causal direction from data using the Transfer Entropy, both in bivariate systems and in networks. The method was then applied to the earthquake analysis for an interval of 4018 days on an area comprising the Japan trench. Within a conservative margin of confidence, the results could not at this point confirm any of the four precursor options considered, but future work can clarify initial suggestions regarding tidal amplitudes link to seismicity, and pre-seismic gravity changes and cumulative daily magnitude anomalies. The Matlab/Octavecodes for our method are open-source and available at https://github.com/artvalencio/causality-toolbox We hope the method is able to support the quest for other precursor candidates, and to assist other fields of knowledge.
112

The role of heterogeneity in long-range interacting systems : from nucleation to earthquake fault systems

Silva, James Brian 05 November 2016 (has links)
The role of heterogeneity in two long-range systems is explored with a focus on the interplay of this heterogeneity with the component system interactions. The first will be the heterogeneous Ising model with long-range interactions. Earthquake fault systems under long-range stress transfer with varying types of heterogeneity will be the second system of interest. First I will review the use of the intervention method to determine the time and place of nucleation and extend its use as an indicator for spinodal nucleation. The heterogeneous Ising model with fixed magnetic sites will then be reformulated as a dilute random field Ising model. This reformulation will allow for the application of spinodal nucleation theory to the heterogeneous Ising model by correcting the spinodal field and the critical exponent sigma describing the critical behavior of clusters in spinodal nucleation theory. The applicability of this correction is shown by simulations that determine the cluster scaling of the nucleating droplets near the spinodal. Having obtained a reasonable definition of the saddle point object describing the nucleation droplet, the density profile of the nucleating droplet is measured and deviations from homogeneous spinodal nucleation are found due to the excess amount of sparseness in the nucleating droplet due to the heterogeneity. Earthquake fault systems are then introduced and a connection is shown of two earthquake models. Heterogeneity is introduced in the form of asperities with the intent of modeling the effect of hard rocks on earthquake statistics. The asperities are observed to be a crucial element in explaining the behavior of aftershocks resulting in Omori's law. A second form of heterogeneity is introduced by coupling the Olami-Feder-Christensen model to an invasion percolation model for the purpose of modeling an earthquake fault system undergoing hydraulic fracturing. The ergodicty and event size statistics are explored in this extended model. The robustness of the event size statistics results are explored by allowing for the dissipation parameter in the Olami-Feder-Christensen model to vary.
113

Social capital and psychological stress in post-earthquake Haiti

January 2019 (has links)
archives@tulane.edu / 1 / Sarah Beth Rescoe
114

Testing spatial correlation of subduction interplate coupling and forearc morpho-tectonics / Spatial correlation of subduction interplate coupling and forearc morpho-tectonics

Kaye, Grant David 09 October 2003 (has links)
The two largest earthquakes ever recorded, the 1964 M[subscript w] 9.2 Alaskan and 1960 M[subscript w] 9.5 Chilean, occurred on seismogenic plate interfaces at subduction zones. It has been theorized that the catastrophic failure of a locked zone along the contact between the downgoing slab and the upper plate causes these earthquakes, although determinations of the position, attitude and extent of this locked zone vary from model to model. Four methods used to constrain the positions of the locked zones are: (1) historical great earthquake rupture extents, (2) heat flow/thermal profiles along the seismogenic plate interface, (3) patterns of surface deformation across the subduction zone forearc, and (4) spatial patterns of upper plate seismicity. Secondary parameters, such as subducted sediment thickness, upper plate lithology, and dip angle of the subducting slab likely play a role in locked zone location as well. In addition to a locked zone, the upper plate of most subduction zones is marked by paired inner and outer forearc highs and basins between the deformation front (trench) and the volcanic arc. Although such surface morphological features are easy to recognize, their spatial and geometric relationships to the locked zone have not been investigated systematically. This thesis investigates correlation between the spatial position of these morpho-tectonic features and the underlying locked zone at the Aleutian, Alaskan, Cascadia, Costa Rican, Javanese, Sumatran, Nankai, and Southern Chilean subduction zones. For all subduction zones other than Cascadia, which has yet to experience a great earthquake in historical times, the applied means of determining the position of the locked zones place them on plate interface regions between the inner and outer forearc highs. A strong correlation exists between dip of the downgoing plate and the width of both the locked zone and the spacing of the forearc morphologic elements for each of the subduction zones examined. The concept of comparative subductology is updated and enhanced in this study by creating GIS databases incorporating geological, seismological, geodetic, and geophysical observations. Correlations between surface morphological features and geologic and geophysical observations provide insight into controls on the position of the locked zone responsible for great earthquakes within the eight subduction zones examined, indicating that forearc morphology and interplate coupling are related via basic subduction parameters and the structural-tectonic regime of the forearc region. / Graduation date: 2004
115

Earthquake size, recurrence and rupture mechanics of large surface-rupture earthquakes along the Himalayan Frontal Thrust of India /

Kumar, Senthil January 2005 (has links)
Thesis (Ph. D.)--University of Nevada, Reno, 2005. / "August 2005." Includes bibliographical references. Online version available on the World Wide Web. Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2005]. 1 microfilm reel ; 35 mm.
116

A Leaky House: Haiti in the Religious Aftershocks of the 2010 Earthquake

Payne, Nichole 06 September 2012 (has links)
My research explores nation building, religious conflict and Christian democratization in Post-earthquake Haiti. Christians I spoke with blamed Vodou for the destructive quake. In Haiti, Vodouisants now require UN protection to practice their faith. The thick religious tension in Haiti post-earthquake could portend deep political riffs and dangerous religious persecution. What is more, the quake has effectively shut down government, leaving in its wake essentially an NGO Republic. Moreover, some sectors of the population, particularly the very poor in the black majority, have been converting to evangelical Christianity at very high rates. About the conversions Vodouisants say, "Kay koule twompe soley soley men li pa twompe lapil." A leaky house can fool the sun, but it can't fool the rain. I took this notion of a leaky house from the discussion with a Vodouisant research participant who often compared the massive conversions to an incomplete and quick cover for the inner turmoils of the Haitian subject. I expanded this phrase to work as analogy for the significant evangelical/NGO infrastructure in Haiti. Can this leaky house last as the pseudo-governmental body of Haiti? Problem: A devastating 7.0 Earthquake rocked Haiti on January 12th, 2010. By January 24th, at least 52 aftershocks measuring 4.5 or greater had been recorded (CBS News 2010). Cite’ De Soleil has turned into a devastating battleground-- Vodouisants against Christians. Christian evangelicals have a carte blanche to intervene into the lives of devastated Haitians, also into the Haitian government. Struggling with insufficient capacity in the face of overwhelming poverty and environmental disasters, the Haitian government has capsized in what many are calling a religious coup d’état. At least 10,000 religious non-governmental organizations (NGOs) are operating in Haiti. Against this background, the actual hypothesis to be tested in this research is that the conversion from Vodou to most sectors of evangelical Christianity and the subsequent violence against Vodou practitioners is, in the case of some of my research participants, actually a modality for expatriation from, or incorporation into, the New Haitian body politic.
117

Nonlinear effects in ground motion simulations: modeling variability, parametric uncertainty and implications in structural performance predictions

Li, Wei 08 July 2010 (has links)
While site effects are accounted for in most modern U.S. seismic design codes for building structures, there exist no standardized procedures for the computationally efficient integration of nonlinear ground response analyses in broadband ground motion simulations. In turn, the lack of a unified methodology affects the prediction accuracy of site-specific ground motion intensity measures, the evaluation of site amplification factors when broadband simulations are used for the development of hybrid attenuation relations and the estimation of inelastic structural performance when strong motion records are used as input in aseismic structural design procedures. In this study, a set of criteria is established, which quantifies how strong nonlinear effects are anticipated to manifest at a site by investigating the empirical relation between nonlinear soil response, soil properties, and ground motion characteristics. More specifically, the modeling variability and parametric uncertainty of nonlinear soil response predictions are studied, along with the uncertainty propagation of site response analyses to the estimation of inelastic structural performance. Due to the scarcity of design level ground motion recording, the geotechnical information at 24 downhole arrays is used and the profiles are subjected to broadband ground motion synthetics. For the modeling variability study, the site response models are validated against available downhole array observations. The site and ground motion parameters that govern the intensity of nonlinear effects are next identified, and an empirical relationship is established, which may be used to estimate to a first approximation the error introduced in ground motion predictions if nonlinear effects are not accounted for. The soil parameter uncertainty in site response predictions is next evaluated as a function of the same measures of soil properties and ground motion characteristics. It is shown that the effects of nonlinear soil property uncertainties on the ground-motion variability strongly depend on the seismic motion intensity, and this dependency is more pronounced for soft soil profiles. By contrast, the effects of velocity profile uncertainties are less intensity dependent and more sensitive to the velocity impedance in the near surface that governs the maximum site amplification. Finally, a series of bilinear single degree of freedom oscillators are subjected to the synthetic ground motions computed using the alternative soil models, and evaluate the consequent variability in structural response. Results show high bias and uncertainty of the inelastic structural displacement ratio predicted using the linear site response model for periods close to the fundamental period of the soil profile. The amount of bias and the period range where the structural performance uncertainty manifests are shown to be a function of both input motion and site parameters.
118

Soil-structure interaction under multi-directional earthquake loading

Yan, Xiaorong., 閆晓荣. January 2012 (has links)
The dynamic interaction between the soil and the structure resting on it during earthquakes can alter the response characteristics both of the structure and the soil. Despite significant efforts over the past decades, the interaction effect is not yet fully understood and is sometimes misunderstood. In the context of performance based design, there remain a number of uncertainties to be addressed seriously. Current practice of seismic soil-structure response analysis has tended to focus on the effect of horizontal motion although actual ground motions are comprised of both horizontal and vertical components. In several recent earthquakes, very strong vertical ground motions have been recorded, raising great concern over the potential effect of vertical motion on engineering structures. To address this emerging problem, seismic response considering the soil-structure interaction effect to both vertical and horizontal earthquake motions needs to be investigated. This thesis presents a simple and practical framework for the analysis of site response and soil-structure interaction to both horizontal and vertical earthquake motions, which can take into account the soil nonlinearity and material damping effect. The analysis procedure involves the use of the dynamic stiffness matrix method and equivalent-linear approach and is built in the modern MATLAB environment to take the full advantages of the matrix operations in MATLAB. The input motions can be specified at the soil–bedrock interface or a rock outcropping. A detailed assessment of the procedure is provided to illustrate that the procedure is able to produce acceptable predictions of both vertical and horizontal response of soil-structure systems. It is shown that soil nonlinearity plays an important role in altering the response of the structure and soil, and the methods of analysis for soil-structure interaction adopted in current engineering practice may not be able to adequately account for soil nonlinearity. Furthermore, effects of a number of influencing factors, such as material damping ratio, Poisson’s ratio of soil, intensity and location of input motion and the embedment ratio of the foundation are examined, leading to several useful implications for seismic engineering practice. / published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
119

Seismic performanc of link-to-column connections in steel eccentrically braced frames

Okazaki, Taichiro 28 August 2008 (has links)
Not available / text
120

The influence of earthquake ground motion on wind turbine loads

Arora, Himanshu 17 June 2011 (has links)
The design of wind turbines installed in various regions of the world where earthquakes are likely must take into account loads imposed on the turbine due to ground shaking. Currently, design standards such as the International Electrotechnical Commission’s standard, IEC 61400-1, do not provide detailed guidelines for assessing loads on wind turbines due to seismic input excitation. In regions of high seismic hazard, it is extremely important to perform a thorough seismic analysis. Various simplified and full-system wind turbine models have been published and used for seismic analysis of turbine loads in recent years. Among these models, the open-source software, FAST, allows for full-system simulation of the response of wind turbines subjected to earthquake ground motion along with other sources of loading such as from the mean wind field and turbulence. This study employs this open-source software to simulate seismic loads and presents statistical and spectral summaries resulting from extensive analyses undertaken by simulating turbine response to various input motions from Western U.S. earthquakes. A total of 150 different earthquake ground motion records with varying magnitude and distance from fault rupture are selected and normalized/scaled to selected target levels prior to response simulation using a utility-scale 5-MW wind turbine model. The records selected are divided into six groups of 25 records each; the groups consist of different magnitude and distance-to-rupture values. The records in each bin are scaled to have similar demand levels as the average of the demand of the unscaled records in that bin. Two different normalization options are considered—in one, the scaling is at the rotor rotation rate (or the once-per-rev or 1P frequency); in the other, the scaling is done at the tower fore-aft first mode frequency. A study of various turbine load measures is conducted. It is found that turbine tower loads, in particular, are especially influenced by the earthquake excitation. / text

Page generated in 0.0461 seconds