• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 708
  • 78
  • 21
  • 17
  • 16
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1189
  • 361
  • 236
  • 219
  • 215
  • 183
  • 175
  • 148
  • 136
  • 119
  • 116
  • 113
  • 80
  • 80
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Seismic assessment of buildings in Hong Kong with special emphasis on displacement-based approaches

Sheikh, MD. Neaz. January 2005 (has links)
published_or_final_version / abstract / Civil Engineering / Doctoral / Doctor of Philosophy
82

Stochastic Characterization and Simulation of Ground Motions based on Earthquake Scenarios

Vlachos, Christos January 2016 (has links)
A novel stochastic earthquake ground motion model is formulated in association with physically interpretable parameters that are capable of efficiently characterizing the complex evolutionary nature of the phenomenon. A multi-modal, analytical, fully non-stationary spectral version of the Kanai-Tajimi (K-T) model is introduced achieving a realistic description of the evolutionary spectral energy distribution of seismic ground motions. The functional forms describing the temporal evolution of the model parameters can efficiently model highly non-stationary power spectral characteristics. The analysis space, where the analytical forms describing the evolution of the model parameters are established, is the energy domain instead of the typical use of the time domain. This space is used in conjunction with a newly defined energy-associated amplitude modulating function. The Spectral Representation Method supports the simulation of sample ground motions realizations. A predictive stochastic model for simulation of earthquake ground motions is developed, using a user-specified earthquake scenario description as input, and resulting in fully nonstationary ground acceleration time-histories at a site of interest. The previously formed analytical non-stationary K-T ground motion model lies at the core of the developed predictive model. An extensive Californian subset of the NGA-West2 earthquake ground motion database is used to develop and calibrate the predictive stochastic model. Sample observations of the model parameters are obtained by fitting the K-T model to the database records, and their resulting marginal distributions are effectively described by simple probability models. Advanced random-effect regression models are established in the normal probabilistic space, capable of linking the stochastic K-T model parameters with the moment magnitude Mw, closest distance Rrup and average shear-wave velocity VS30 at a Californian site of interest. The included random effects take effectively into account the correlation of ground motions pertaining to the same earthquake event, and the fact that each site is expected to have its own effect on the resulting ground motion. The covariance structure of the normal K-T model parameters is next estimated, allowing finally for the complete mathematical description of the predictive stochastic model for a given earthquake scenario. The entirety of the necessary steps for the simulation of the developed predictive stochastic model is provided, resulting in the generation of any number of fully non-stationary ground acceleration time-series that are statistically consistent with the specified earthquake scenario. In an effort to assess the performance and versatility of the developed predictive stochastic model, a list of simple engineering metrics, associated with the characterization of the earthquake ground motion time-series, is studied, and results from simulated earthquake ground acceleration time-series of the developed predictive model are compared with corresponding predictions of pertinent Ground Motion Prediction Equations (GMPEs) for a variety of earthquake and local-site characteristics. The studied set of ground acceleration time-series features includes the Arias intensity IA, the significant duration T5-95 of the strong ground shaking, and the spectral-based mean period of the earthquake record Tm. The predictive stochastic model is next validated against the state-of-the-art NGA-West2 GMPE models. The statistics of elastic response spectra derived by ensembles of synthetic ground motions are compared with the associated response spectra as predicted by the considered NGA-West2 ground motion prediction equations for a wide spectrum of earthquake scenarios. Finally, earthquake non-linear response-history analyses are conducted for a set of representative single- and multi-degree-of-freedom hysteretic structural systems, comparing the seismically induced inelastic structural demand of the considered systems, when subjected to sets of both real strong ground motion records, and associated simulated ground acceleration time-histories as well. The comparisons are performed in terms of seismic structural demand fragility curves.
83

Experimental evaluation of the seismic performance of hospital piping subassemblies

Goodwin, Elliott Richard. January 2004 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2004. / "December 2004." Includes bibliographical references (leaves 57-61). Online version available on the World Wide Web.
84

The nonlinear response of reinforced concrete coupling slabs in earthquake-resisting shearwall structures /

Malyszko, Thomas E. January 1986 (has links)
No description available.
85

Post-disaster geotechnical response for hilly terrain: a case study from the Canterbury Earthquake Sequence.

Yates, Katherine January 2014 (has links)
Case study analysis of the 2010-2011 Canterbury Earthquake Sequence (CES), which particularly impacted Christchurch City, New Zealand, has highlighted the value of practical, standardised and coordinated post-earthquake geotechnical response guidelines for earthquake-induced landslides in urban areas. The 22nd February 2011 earthquake, the second largest magnitude event in the CES, initiated a series of rockfall, cliff collapse and loess failures around the Port Hills which severely impacted the south-eastern part of Christchurch. The extensive slope failure induced by the 22nd February 200 earthquake was unprecedented; and ground motions experienced significantly exceeded the probabilistic seismic hazard model for Canterbury. Earthquake-induced landslides initiated by the 22nd February 2011 earthquake posed risk to life safety, and caused widespread damage to dwellings and critical infrastructure. In the immediate aftermath of the 22nd February 2011 earthquake, the geotechnical community responded by deploying into the Port Hills to conduct assessment of slope failure hazards and life safety risk. Coordination within the voluntary geotechnical response group evolved rapidly within the first week post-earthquake. The lack of pre-event planning to guide coordinated geotechnical response hindered the execution of timely and transparent management of life safety risk from coseismic landslides in the initial week after the earthquake. Semi-structured interviews were conducted with municipal, management and operational organisations involved in the geotechnical response during the CES. Analysis of interview dialogue highlighted the temporal evolution of priorities and tasks during emergency response to coseismic slope failure, which was further developed into a phased conceptual model to inform future geotechnical response. Review of geotechnical responses to selected historical earthquakes (Northridge, 1994; Chi-Chi, 1999; Wenchuan, 2008) has enabled comparison between international practice and local response strategies, and has emphasised the value of pre-earthquake preparation, indicating the importance of integration of geotechnical response within national emergency management plans. Furthermore, analysis of the CES and international earthquakes has informed pragmatic recommendations for future response to coseismic slope failure. Recommendations for future response to earthquake-induced landslides presented in this thesis include: the integration of post-earthquake geotechnical response with national Civil Defence and Emergency Management; pre-earthquake development of an adaptive management structure and standard slope assessment format for geotechnical response; and emergency management training for geotechnical professionals. Post-earthquake response recommendations include the development of geographic sectors within the area impacted by coseismic slope failure, and the development of a GIS database for analysis and management of data collected during ground reconnaissance. Recommendations provided in this thesis aim to inform development of national guidelines for geotechnical response to earthquake-induced landslides in New Zealand, and prompt debate concerning international best practice.
86

The seismic vulnerability of art objects /

Neurohr, Theresa. January 2006 (has links)
Throughout history, objects of art have been damaged and sometimes destroyed in earthquakes. Even though the importance of providing seismically adequate design for nonstructural components has received attention over the past decade, art objects in museums, either on display or in storage, require further research. The research reported in this study was undertaken to investigate the seismic vulnerability of art objects. Data for this research was gathered from three museums in Montreal. / The seismic behaviour of three unrestrained display cases, storage shelves, and a 6m long dinosaur skeleton model structure was investigated according to the seismic hazard for Montreal and representative museum floor motions were simulated for that purpose. Particular attention was paid to the support conditions, the effects of modified floor surface conditions, the sliding and rocking response of unrestrained display cases, the location (floor elevation) of the display case and/or storage shelves, art object mass, and the dynamic properties of the display cases/storage shelves. The seismic vulnerability of art objects was evaluated based on the seismic response of the display cases/storage shelves at the level of art object display. The display cases were investigated experimentally using shake table testing. Computer analyses were used to simulate the seismic behaviour of storage shelves, and the seismic sensitivity of the dinosaur structure was determined via free vibration acceleration measurements. The floor contact conditions and floor elevation had a crucial effect on the unrestrained display cases, causing them to slide or rock vigorously. The distribution of content mass had a large impact on the response of the shelving system. As a result of experimental and analytical analyses, recommendations and/or simple mitigation techniques are provided to reduce the seismic vulnerability of objects of art.
87

Performance of steel framed domestic structures subjected to earthquake loads

Barton, Andrew David January 1997 (has links)
This thesis investigates the performance of cold formed steel framed domestic structures subjected to earthquake loads. These structures generally include one and two storey houses, comprising steel wall framing, exterior veneer cladding and internal lining. The dynamic, non-linear performance of such structures during earthquakes is simplified to static linear behaviour for design purposes using the structural response modification factor, Rµ. This factor is defined as the product of the structural ductility reduction factor, Rµ, and the over-strength of the system, Ω. This thesis develops a rigorous technique for the determination of Rµ and the application of this technique is demonstrated for a proprietary framing system. This is achieved using novel non-linear, transient dynamic finite element models of these structures subjected to earthquake loads. The model parameters are estimated from unique experiments conducted on representative structures using a shaking table. It is shown that the framing system considered is non-ductile (ie Rµ≈1). This result directly contradicts the assumed ductile behaviour of these framing systems as specified in the Australian earthquake loading standard, AS 1170.4. The significance of this is that current design practices are unconservative and therefore underestimate the earthquake loads on these structures.
88

Development of a GIS-based seismic hazard screening tool

Wilding, Andrew J., January 2008 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2008. / Vita. The print version of this thesis includes an accompanying CD-ROM. "Included with this Thesis is a CD-ROM, which contain the VISUAL BASIC CODE for the S4 application...The included code is divided into three files: a) VISUAL BASIC Module Code, b) VISUAL BASIC Form Code, and c) VISUAL BASIC FFT Code."--leaf 158. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 25, 2008) Includes bibliographical references (p. 160-172).
89

Seismic risk assessment of the transportation network of Charleston, SC

Nilsson, Emily Michelle. January 2008 (has links)
Thesis (M. S.)--Civil and Environmental Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Dr. Reginald DesRoches; Committee Member: Dr. Barry Goodno; Committee Member: Dr. Laurence Jacobs; Committee Member: Dr. Mulalo Doyoyo.
90

Earthquake ground motions in Eastern Canada /

Sonley, Eleanor, January 1900 (has links)
Thesis (Ph. D.)--Carleton University, 2004. / Includes bibliographical references (p. 122-127). Also available in electronic format on the Internet.

Page generated in 0.0339 seconds