131 |
Further experiments on the seismic performance of structural concrete beam-column joints designed in accordance with the principles of damage avoidance : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Engineering in Civil Engineering at the University of Canterbury /Li, Luoman. January 2006 (has links)
Thesis (M.E.)--University of Canterbury, 2006. / Typescript (photocopy). Includes bibliographical references. Also available via the World Wide Web.
|
132 |
Development of an Ultra-Lightweight Buckling-Restrained Brace Using Analytical and Numerical MethodsTinker, John Andrew 01 January 2011 (has links)
An ultra-lightweight buckling-restrained brace (ULWBRB) is developed using a highly ductile aluminum core and FRP restrainer. Utilization of lightweight materials results in a BRB that is 25% the weight of traditional mortar-filled tube varieties allowing easy installation in small to medium sized buildings requiring seismic retrofit without the need for heavy equipment. Construction utilizes commonly stocked materials able to be customized for required strength, drift, and geometry limitations. Analytical single degree of freedom (SDOF) and Euler buckling models are compared with published equations to determine the required restrainer stiffness (RRS). SDOF models yield RRS values 200% higher than the Euler model. Applied end moments due to frame deformation are incorporated into a modified design method that gives RRS values 50% higher than Euler model without eccentricity. RRS is provided using a bundled and wrapped FRP tube configuration using a developed shear flow method considering composite action. Uniaxial low-cycle fatigue (LCF) testing of a 6061-T6 candidate alloy provides data for a constitutive model using combined kinematic-isotropic hardening. LCF testing of round short gage coupons indicates the candidate alloy is capable of stable cycling to 2%, 3%, and 4% total strain with excellent ductility. Early fracture of specimens at 24, 18, and 11 cycles, respectively, also indicates that other candidate alloys should be examined for improved fatigue life. However, inconsistency is noted between similar tests of 6061-T6 that were able to achieve up to 76 cycles at 2.5% total strain. ULWBRB FEA models loaded monotonically consistently give higher RRS values as compared to the analytical methods. This is due to assignment of initial imperfections, longer more realistic unbraced length, higher axial loads achieved through the post-yield region, and plastic hinging potential. Cyclic simulations of braces with the same RRS values are also able to achieve reliable and stable hysteretic behavior through 21 cycles. If a less stiff restrainer is used, cumulative energy dissipation potential is reduced considerably due to pinched hysteresis loops and strain ratcheting. Applied end moments are found to have a linear effect on the RRS that can be modeled by superposition of the buckling effect plus end moment.
|
133 |
Aseismic design of adobe housingMontauban, Pierre Hernando January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Vita. / Includes bibliographical references. / by Pierre Hernando Montauban. / M.S.
|
134 |
Critical evaluation of seismic design criteria for steel buildingsLefki, Lkhider January 1987 (has links)
No description available.
|
135 |
Hysteresis modeling of wood joints and structural systemsFoliente, Greg C. 29 September 2009 (has links)
Difficulties in characterizing the dynamic behavior of wood structures have hindered investigations into their performance under dynamic loading. Because of this, wood structures are treated unfavorably in seismic design codes, even though past damage assessment surveys after seismic events indicated generally satisfactory performance.
To allow investigations into their performance and safety under dynamic loading, the energy dissipation mechanisms of wood joints and structural systems must be known and the hysteretic behavior modeled properly. This thesis presents a general hysteresis model for wood joints and structural systems, based on a modification of the Bouc-Wen-Baber-Noori (BWBN) model. The hysteretic constitutive law, based on the endochronic theory of plasticity and characterized by a single mathematical form, produces a versatile, smoothly varying hysteresis that models previously observed behavior of wood joints and structural systems, namely, (1) nonlinear, inelastic behavior, (2) stiffness degradation, (3) strength degradation, (4) pinching, and (5) memory. The constitutive law takes into account the experimentally observed dependence of wood joints' response to their past history (Le., the input and response at earlier times, or memory). Practical guidelines to estimate the hysteresis parameters of any wood joint or structural system are given. Hysteresis shapes produced by the proposed model are shown to compare reasonably well with experimental hysteresis of wood joints with: (1) yielding plate, (2) yielding nails, and (3) yielding bolts. To demonstrate its use, the proposed model is implemented in a nonlinear dynamic analysis program for single-degree-of-freedom (SDF) systems. System response from arbitrary dynamic loading, such as cyclic or earthquake-type loadings, can be computed. Three SDF wood systems are subjected to the Loma Prieta accelerogram to obtain their response time histories. Advantages of using the proposed model over currently available models in nonlinear dynamic analysis of more complex systems are identified. A multidegree-of-freedom shear building model incorporating the proposed hysteresis model is formulated but not implemented on a computer. / Master of Science
|
136 |
A survey of earthquake mitigation strategies & building principles for small traditional dwellings /Weldelibanos, Fitsumberhan January 1993 (has links)
No description available.
|
137 |
Performance-based seismic evaluation of steel moment frames with linear fluid viscous dampersBall, James T. 01 July 2000 (has links)
No description available.
|
138 |
Assessment of the behaviour factor for the seismic design of reinforced concrete structural walls according to SANS 10160 : part 4Spathelf, Christian Alexander 12 1900 (has links)
Thesis (MScEng (Civil Engineering))--Stellenbosch University, 2008. / The South African code for the design loading of building structures, namely SABS
0160 (1989), was revised with the requirements for seismic design prescribed in SANS
10160: Part 4: Seismic actions and general requirements for buildings. SANS 10160:
Part 4 incorporates the seismic design provisions of several seismic codes of practice,
however, the influence of the value prescribed for the behaviour factor has not been
established with regard to South African conditions.
The behaviour factor is used by most seismic design codes to account for the energy
dissipating effects of plastification in structural systems when subjected to earthquake
ground motion, to reduce the elastically determined forces to be designed for. However,
a considerable difference is observed in the values of the behaviour factor prescribed for
the design of reinforced concrete walls between the leading international seismic codes.
The aim of this study is to assess the value of the behaviour factor prescribed in SANS
10160: Part 4 for reinforced concrete structural walls under the influence of South
African seismic conditions and code requirements.
A method of quantifying the value of the behaviour factor was developed and
implemented in the study by Ceccotti (2008). This method entails estimation of the
maximum analytical behaviour factor as the ratio of seismic intensity at failure of the
structure to the seismic intensity prescribed by the design code. Such a method is
adopted for this study where the lateral force resisting systems of six-, eight- and tenstorey
buildings are investigated with nonlinear static analysis to quantify the maximum
computationally-determined value of the behaviour factor.
Firstly, it is observed that it is possible to quantify the value of the behaviour factor
through the use of a computational study. The nonlinear static method of analysis is
shown to provide reliable results in the estimation of the behaviour factor for a sixstorey
building, however, does not perform well for taller buildings. Further investigation with the use of dynamic time-history analysis is proposed to evaluate the
influence of the factors identified in this study.
The behaviour of structural walls, designed for reduced forces with the prescribed
behaviour factor of 5.0, exhibits high yield strengths and resists the design seismic
action entirely elastically. This high strength is found to be due to the
reliability/redundancy factor prescribed by SANS 10160: Part 4 and because of the high
values of structural overstrength. Similar studies observed high values of structural
overstrength for buildings designed for low seismic intensity, which were shown to
result from the fact that the resistance required to gravity loading became more critical
than the seismic loads in the design of the structural system.
This study identifies several factors that influence the value of the behaviour factor,
such as the number of walls in the lateral force resisting system; the number of storeys
of the buildings; available displacement ductility of the structural system; and the
ground type designed for.
|
139 |
Effect of seismic loads on water-retaining structures in areas of moderate seismicityFourie, Johanna Aletta 03 1900 (has links)
Thesis (MScEng (Civil Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Water-retaining structures are commonly used in South Africa for the storage of potable water and
waste water. However, a South African code pertaining to the design of concrete water-retaining
structures do not currently exist and therefore use is made of the British Standard BS 8007 (1987).
For the design of concrete water-retaining structures in South Africa, only the hydrostatic loads are
considered while forces due to seismic activity are often neglected even though seismic excitations
of moderate magnitude occur within some regions of the country. Hence, the primary aim of this
study was to determine whether seismic activity, as it occurs in South Africa, has a significant
influence on water-retaining structures and whether it should be considered as a critical load case.
In order to assess the influence of seismic activity on the design of water-retaining structures the
internal forces in the wall and the required area of reinforcement were compared. Comparisons
were made between the seismic analyses and static analyses for both the ultimate and serviceability
limit states. In order to obtain the internal forces in the wall use was made of an appropriate Finite
element model. Three Finite element models were investigated in this study and the accuracy of
each model was assessed based on the fundamental frequency, base shear force and overturning
moment. These values were compared to the values obtained with the numerical method presented
by Veletsos (1997) which was verified with Eurocode 8: Part 4 (2006).
The results obtained indicated that seismic excitations of moderate magnitude do have a significant
influence on the reinforcement required in concrete water-retaining structures. For both the
ultimate limit state and serviceability limit state the required reinforcement increased significantly
when seismic loads were considered in the design. As in the case for static design of water-retaining
structures, the serviceability limit state also dominated the design of these structures under seismic
loading. / AFRIKAANSE OPSOMMING: Beton waterhoudende strukture in Suid-Afrika word op ‘n gereelde basis gebruik vir die stoor van
drink- sowel as afvalwater. ‘n Suid-Afrikaanse kode vir die ontwerp van hierdie strukture bestaan
egter nie en dus word die Britse kode BS 8007 (1987) hiervoor gebruik. Vir ontwerp doeleindes word
soms slegs die hidrostatiese kragte beskou terwyl kragte as gevolg van seismiese aktiwiteite nie
noodwendig in berekening gebring word nie. Seismiese aktiwiteite van gematigde grootte kom egter
wel voor in sekere dele van Suid-Afrika. Die hoofdoel van hierdie studie was dus om die invloed van
seismiese aktiwiteite, soos voorgeskryf vir Suid-Afrikaanse toestande, op beton waterhoudende
strukture te evalueer asook om te bepaal of dit ‘n kritiese lasgevalle sal wees.
Vir hierdie doel is die interne kragte asook die area staal bewapening vir elk van die statiese en
dinamiese lasgevalle vergelyk. Vergelykings is getref tussen die dinamiese en statiese resultate vir
beide die swigtoestand en die diensbaarheidstoestand. Vir die bepaling van die interne kragte is
gebruik gemaak van eindige element modelle. Tydens hierdie studie was drie eindige element
modelle ondersoek en die akkuraatheid van elk geëvalueer op grond van die fundamentele
frekwensie, die fondasie skuifkrag en die omkeermoment. Hierdie waardes was ondermeer bereken
met twee numeriese metodes soos uiteengesit in Veletsos (1997) en Eurocode 8: Part 4 (2006).
Die resultate dui daarop dat die invloed van seismiese aktiwiteite op beton waterhoudende
strukture in Suid-Afrika nie weglaatbaar klein is nie en wel in berekening gebring behoort te word
tydens die ontwerp. Die interne kragte vir beide die swigtoestand en diensbaarheidstoestand is
aansienlik hoër vir die seismiese lasgeval as vir die statiese geval. Die diensbaarheidstoestand het
deurentyd die ontwerp van beton waterhoudende strukture vir seismiese toestande oorheers.
|
140 |
The effect of seismic activity on reinforced concrete frame structures with infill masonry panelsJarvis, Wesley James 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Certain regions within the Western Cape Province are at risk of a moderate intensity
earthquake. It is therefore crucial that infrastructure in these areas be
designed to resist its devastating effect. Numerous types of structural buildings
exist in these seismic prone areas. The most common types are either reinforced
concrete framed buildings with masonry infill or unreinforced masonry
buildings. Many of these buildings predate the existence of the first loading
code of 1989 which provided regulations for seismic design. The previous code
was superseded in 2010 with a code dedicated to providing guidelines for seismic
design of infrastructure. A concern was raised whether these buildings
meet the requirements of the new code. A numerical investigation was performed
on a representative reinforced concrete framed building with masonry
infill to determine whether the building meets the new code’s requirements.
The results from the investigation show that the stresses at critical points in
the columns exceed the codified requirements, thus leading to local failure.
After careful review it was discovered that these local failures in the columns
will most likely lead to global failure of the building. / AFRIKAANSE OPSOMMING: In sekere streke in die Wes-Kaap bestaan daar risiko van matige intensiteit
aardbewings. Dit is dus noodsaaklik dat die infrastruktuur in hierdie gebiede
ontwerp word om die vernietigende uitwerking te weerstaan. Gebous
met verskillende tipes strukturele uitlegte kom in hierdie gebied voor. Die
mees algemene struktuur tipe is gewapende beton-raam geboue met baksteen
invol panele sowel as ongewapende baksteen geboue. Baie van hierdie geboue
is gebou voor die eerste las-kode van 1989 wat regulasies vir seismiese ontwerp
voorsien in gebruik geneem is. Die vorige kode is vervang in 2010 met ’n
kode toegewy tot die verskaffing van riglyne vir seismiese ontwerp van infrastruktuur.
Kommer het ontstaan of hierdie geboue voldoen aan die vereistes
van die nuwe kode. ’n Numeriese ondersoek is uitgevoer op ’n verteenwoordigende
gewapende beton geraamde gebou met baksteen panele om te bepaal
of die gebou voldoen aan die nuwe kode vereistes rakende sismiese ontwerp.
Die resultate van die ondersoek toon dat die spanning op kritieke punte in
die kolomme die gekodifiseerde vereistes oorskry, wat tot plaaslike faling lei.
Na verdere onderssoek is dit bepaal dat die plaaslike faling in die kolomme
waarskynlik tot globale faling van die gebou sal lei.
|
Page generated in 0.0741 seconds