• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 18
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 175
  • 175
  • 175
  • 64
  • 58
  • 50
  • 45
  • 45
  • 43
  • 29
  • 27
  • 27
  • 26
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Seismic drift assessment of buildings in Hong Kong with particular application to transfer structures

Li, Jianhui, 李建輝 January 2004 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
142

Achieving Operational Seismic Performance of RC Bridge Bents Retrofitted with Buckling-Restrained Braces

Bazáez Gallardo, Ramiro Andrés Gabriel 13 February 2017 (has links)
Typical reinforced concrete (RC) bridges built prior to 1970 were designed with minimum seismic consideration, leaving numerous bridges highly susceptible to damage following an earthquake. In order to improve the seismic behavior of substandard RC bridges, this study presents the seismic performance of reinforced concrete bridge bents retrofitted and repaired using Buckling-Restrained Braces (BRBs) while considering subduction zone earthquake demands. In order to reflect displacement demands from subduction ground motions, research studies were conducted to develop quasi-static loading protocols and then investigate their effect on structural bridge damage. Results suggested that subduction loading protocols may reduce the displacement ductility capacity of RC bridge columns and change their failure mode. The cyclic performance of reinforced concrete bridge bents retrofitted and repaired using BRBs was experimentally evaluated using large-scale specimens and the developed loading histories. Three BRB specimens were evaluated with the aim of assessing the influence of these components on the overall performance of the retrofitted and repaired bents. Additionally, subassemblage tests were conducted in an effort to study the response of these elements and to allow for refined nonlinear characterization in the analysis of the retrofitted and repaired systems. The results of the large-scale experiments and analytical studies successfully demonstrated the effectiveness of utilizing buckling-restrained braces for achieving high displacement ductility of the retrofitted and repaired structures, while also controlling the damage of the existing vulnerable reinforced concrete bent up to an operational performance level.
143

The seismic geotechnical modeling, performance, and analysis of pile-supported wharves

McCullough, Nason J. 02 June 2003 (has links)
This dissertation presents the results of a research effort conducted to better understand the seismic performance and analysis of pile-supported wharves. Given the limited number of well-documented field case histories, the seismic performance of pile-supported wharves has been poorly quantified, and the analysis methods commonly employed in engineering practice have generally not been validated. Field case histories documenting the seismic performance of pile-supported wharves commonly contain only limited information, such as approximations of wharf and embankment deformations and peak ground surface accelerations. In order to supplement the field data, five centrifuge models were dynamically tested, with each model containing close to 100 instruments monitoring pile bending moments, excess pore pressures, displacements, and accelerations. The combined field and model database was used to develop seismic performance relationships between permanent lateral deformations, maximum and residual bending moments and peak ground surface displacements. Key issues such as the seismic performance of batter piles, the development of large moments at depth, and the need to account for permanent lateral deformations for high levels of shaking, even for very stable geometries, are discussed. The field data and model studies were also used to validate two geotechnical seismic performance analysis methods: 1) the limit-equilibrium based rigid, sliding block (Newmark) method, and 2) an advanced finite-difference effective stress based numerical model (FLAC). Favorable predictions were generally obtained for both methods, yet there was a large variability in the results predicted using the rigid, sliding block method. The numerical model predicted the permanent deformations, pore pressure generation, and accelerations fairly well, however, pile bending moments were poorly predicted. The results of this research clearly highlighted the need for analysis validation studies, and note the uncertainty and variability inherent in the seismic performance of complex structures. The lack of adequate validation may lead to an over-confidence and false sense of security in the results of the seismic analysis methods. This dissertation specifically addresses pile-supported wharves, yet the results presented herein are applicable to other pile-supported structures located near, or on, slopes adjacent to the waterfront, such as: bridge abutments, railroad trestles, and pile-supported buildings near open slopes. Performance and analysis issues common to all of these structures are addressed, such as: liquefiable soils, lateral pile response in horizontal and sloping soils, the lateral behavior of piles in rock fill, and global slope stability, as well as the general observed seismic behavior. / Graduation date: 2004
144

Effect of nonlinear soil modeling on ground response at Macau

Zhou, Jian Mei January 2010 (has links)
University of Macau / Faculty of Science and Technology / Department of Civil and Environmental Engineering
145

A Contact Element Approach with Hysteresis Damping for the Analysis and Design of Pounding in Bridges

Muthukumar, Susendar 26 November 2003 (has links)
Earthquake ground motion can induce out-of-phase vibrations between adjacent structures due to differences in dynamic characteristics, which can result in impact or pounding of the structures if the at-rest separation is insufficient to accommodate the relative displacements. In bridges, seismic pounding between adjacent decks or between deck and abutment can result in localized deck damage, bearing failure, damage to shear keys and abutments, and even contribute to the collapse of bridge spans. This study investigates pounding in bridges from an analytical perspective. A simplified nonlinear model of a multiple-frame bridge is developed in MATLAB incorporating the effects of inelastic frame action, nonlinear hinge behavior and abutments. The equations of motion of the bridge response to longitudinal ground excitation are assembled and solved using the fourth-order Runge-Kutta method. Pounding is simulated using contact force-based models such as the linear spring, Kelvin and Hertz models, as well as the momentum-based stereomechanical method. In addition, a Hertz contact model with nonlinear damping (Hertzdamp model) is also introduced to model impact. The primary factors controlling the pounding response are identified as the frame period ratio, ground motion effective period ratio, restrainer stiffness ratio and frame ductility ratio. Pounding is most critical for highly out-of-phase frames. Impact models without energy dissipation overestimate the stiff system displacements by 15%-25% for highly out-of-phase, elastic systems experiencing moderate to strong ground excitation. The Hertzdamp model is found to be the most effective in representing impact. Traditional column hysteresis models such as the elasto-plastic and bilinear models underestimate the stiff system amplification and overestimate the flexible system amplification due to impact, when compared with stiffness and strength degrading models. Strength degradation and pounding are critical on the stiff system response to near field ground motions, for highly out-of-phase systems. Current design procedures are adequate in capturing the nonlinear hinge response when the bridge columns are elastic, but require revisions such as the introduction of time dependent reduction factors, and a frame design period to work for inelastic situations. Finally, a bilinear truss element with a gap is proposed for implementing energy dissipating impact models in commercial structural software.
146

Analytical and Experimental Study of Concentrically Braced Frames with Zipper Struts

Yang, Chuang-Sheng 20 November 2006 (has links)
This thesis investigates the performance of concentrically braced zipper frames through complementary experimental and numerical simulation approaches and proposes a design methodology for an innovative bracing scheme labeled as the suspended zipper frame. The suspended zipper frame intends to ensure that the top-story hat truss remains elastic, resulting in very ductile behavior of the structure. In the first part of the work, a three-story prototype frame was designed based on a preliminary design method. Three tests were conducted on one-third scale models of this prototype to verify the design procedure and assess the system performance under very different load histories. Comparisons of the results between analyses and experiments validated the partial-height zipper mechanism envisioned, and led to refinements of the design procedure and establishment of appropriate design details for these frames. The design and performance of this structural system are illustrated with three-, nine-, and twenty-story buildings designed for the same masses as those used in the SAC studies for the Los Angeles area. The proposed design strategy results in suspended zipper frames having more ductile behavior and higher strength than typical zipper frames. In addition, the suspended zipper frames also appear to reduce the tendency of chevron-braced frames to form soft stories and to improve seismic performance without having to use overly stiff beams. Finally, an explanation of the design philosophy as well as code language format of the design procedure is given.
147

Seismic Vulnerability Assessment of Retrofitted Bridges Using Probabilistic Methods

Padgett, Jamie Ellen 09 April 2007 (has links)
The central focus of this dissertation is a seismic vulnerability assessment of retrofitted bridges. The objective of this work is to establish a methodology for the development of system level fragility curves for typical classes of retrofitted bridges using a probabilistic framework. These tools could provide valuable support for risk mitigation efforts in the region by quantifying the impact of retrofit on potential levels of damage over a range of earthquake intensities. The performance evaluation includes the development of high-fidelity three-dimensional nonlinear analytical models of bridges retrofit with a range of retrofit measures, and characterization of the response under seismic loading. Sensitivity analyses were performed to establish an understanding of the appropriate level of uncertainty treatment to model, assess, and propagate sources of uncertainty inherent to a seismic performance evaluation for portfolios of structures. Seismic fragility curves are developed to depict the impact of various retrofit devices on the seismic vulnerability of bridge systems. This work provides the first set of fragility curves for a range of bridge types and retrofit measures. Framework for their use in decision making for identification of viable retrofit measures, performance-based retrofit of bridges, and cost-benefit analyses are illustrated. The fragility curves developed as a part of this research will fill a major gap in existing seismic risk assessment software, and enable decision makers to quantify the benefits of various retrofits.
148

Strategies for rapid seismic hazard mitigation in sustainable infrastructure systems

Kurata, Masahiro 14 September 2009 (has links)
The goal of this study is to design and evaluate economic and rapid seismic retrofit strategies for relatively small rehabilitation projects for steel structures consistent with the tenets of sustainable design. The need to retrofit existing structures in earthquake prone regions may arise directly from the problem of aging and deteriorating conditions, recognition of the vulnerability of existing infrastructure, from updates in seismic code requirements, or changes in building performance objectives. Traditional approaches to seismic hazard mitigation have focused reducing the failure probabilities, consequences from failures, and time to recovery. Such paradigms had been established with little regard to the impact of their rehabilitation measures on the environment and disruptions to occupants. The rapid rehabilitation strategies proposed here have sustainability benefits in terms of providing a more resilient building stock for our communities as well as minimizing environmental and economical impacts and social consequences during the rehabilitation project. To achieve these goals, a unique approach to design supplemental systems using tension-only elements is proposed. In this design approach undesirable global and local buckling are eliminated. Two rapid rehabilitation strategies are presented. The first is a bracing system consisting of cables and a central energy dissipating device (CORE Damper). The second is a shear wall system with the combined use of thin steel plate and tension-only bracing. Analytical studies using both advanced and simplified models and proof-of-concept testing were carried out for the two devices. The results demonstrated stable, highly efficient performance of the devices under seismic load. Preliminary applications of the CORE damper to the retrofitting of a braced steel frame showed the ability of the system to minimize soft story failures. Both techniques can be implemented within a sustainability framework, as these interventions reduce the seismic vulnerability of infrastructure, are low cost, utilize materials and fabrication processes widely available throughout the world, can be handled by unskilled labor and carried out with minimal disruptions to the environment. The approach taken in this study can provide a road map for future development of sustainability-based rehabilitation strategies.
149

Nonlinear effects in ground motion simulations: modeling variability, parametric uncertainty and implications in structural performance predictions

Li, Wei 08 July 2010 (has links)
While site effects are accounted for in most modern U.S. seismic design codes for building structures, there exist no standardized procedures for the computationally efficient integration of nonlinear ground response analyses in broadband ground motion simulations. In turn, the lack of a unified methodology affects the prediction accuracy of site-specific ground motion intensity measures, the evaluation of site amplification factors when broadband simulations are used for the development of hybrid attenuation relations and the estimation of inelastic structural performance when strong motion records are used as input in aseismic structural design procedures. In this study, a set of criteria is established, which quantifies how strong nonlinear effects are anticipated to manifest at a site by investigating the empirical relation between nonlinear soil response, soil properties, and ground motion characteristics. More specifically, the modeling variability and parametric uncertainty of nonlinear soil response predictions are studied, along with the uncertainty propagation of site response analyses to the estimation of inelastic structural performance. Due to the scarcity of design level ground motion recording, the geotechnical information at 24 downhole arrays is used and the profiles are subjected to broadband ground motion synthetics. For the modeling variability study, the site response models are validated against available downhole array observations. The site and ground motion parameters that govern the intensity of nonlinear effects are next identified, and an empirical relationship is established, which may be used to estimate to a first approximation the error introduced in ground motion predictions if nonlinear effects are not accounted for. The soil parameter uncertainty in site response predictions is next evaluated as a function of the same measures of soil properties and ground motion characteristics. It is shown that the effects of nonlinear soil property uncertainties on the ground-motion variability strongly depend on the seismic motion intensity, and this dependency is more pronounced for soft soil profiles. By contrast, the effects of velocity profile uncertainties are less intensity dependent and more sensitive to the velocity impedance in the near surface that governs the maximum site amplification. Finally, a series of bilinear single degree of freedom oscillators are subjected to the synthetic ground motions computed using the alternative soil models, and evaluate the consequent variability in structural response. Results show high bias and uncertainty of the inelastic structural displacement ratio predicted using the linear site response model for periods close to the fundamental period of the soil profile. The amount of bias and the period range where the structural performance uncertainty manifests are shown to be a function of both input motion and site parameters.
150

Performance-based assessments of buckling-restrained braced steel frames retrofitted by self-centering shape memory alloy braces

Pham, Huy 20 September 2013 (has links)
Concrete-filled buckling restrained braces (BRBs) was first developed in 1988 in Tokyo, Japan, to prevent the steel plates in the core portion from buckling, leading the steel core to exhibiting a more stable and fully hysteretic loop than conventional steel braces. However, past studies have shown that buckling restrained braced frames (BRBFs) have a large residual deformation after a median or high seismic event due to steel’s residual strain. In order to address this issue, innovative self-centering SMA braces are proposed and installed in the originally unbraced bays in existing BRBFs to become a hybrid frame system where the existing steel BRBs dissipate energy induced by external forces and the newly added self-centering SMA braces restore the building configuration after the steel BRBs yield. A case study of conventional three-story BRBF retrofitted by the proposed self-centering SMA braces is carried out to develop systematic retrofit strategies, to investigate the structural behavior, and to probabilistically assess their seismic performance in terms of interstory drifts, residual drifts, and brace deformation, as compared to the original steel BRB frames. Finally, the developed brace component fragility curves and system fragility curves will be further used for the assessment of downtime and repair cost.

Page generated in 0.0976 seconds