1 |
Off-fault Damage Associated with a Localized Bend in the North Branch San Gabriel Fault, CaliforniaBecker, Andrew 1987- 14 March 2013 (has links)
Structures within very large displacement, mature fault zones, such as the North Branch San Gabriel Fault (NBSGF), are the product of a complex combination of processes. Off-fault damage within a damage zone and first-order geometric asperities, such as bends and steps, are thought to affect earthquake rupture propagation and energy radiation, but the effects are not completely understood. We hypothesize that the rate of accumulation of new damage decreases as fault maturity increases, and damage magnitude saturates in very large displacement faults. Nonetheless, geometric irregularities in the fault surface may modify damage zone characteristics. Accordingly, we seek to investigate the orientation, kinematics, and density of features at a range of scales within the damage zone adjacent to an abrupt 13 degree bend over 425 m in the NBSGF in order to constrain the relative role of the initiation of new damage versus the reactivation of preexisting damage adjacent to a bend.
Field investigation and microstructural study focused on structural domains before, within, and after the fault bend on both sides of the fault. Subsidiary fault fabrics are similar in all domains outside the bend, which suggests a steady state fracture density and orientation distribution is established on the straight segments before and after the bend. The density of fractures within and outside the bend is similar; however, subsidiary fault orientations and kinematics are different within the bend relative to the straight segments. These observations are best explained by relatively low rates of damage generation relative to rates of fault reactivation during the later stages of faulting on the NBSGF, and that damage zone kinematics is reset as the host rock moves into the bend and again upon exiting the bend. Consequently, significant energy released during earthquake unloading can be dissipated by reactivation and slip on existing fractures in the damage zone, particularly adjacent to mesoscale faults. Thus, areas of heightened reactivation of damage, such as adjacent to geometric irregularities in the fault surface, could affect earthquake rupture dynamics.
|
2 |
Examination of Exhumed Faults in the Western San Bernardino Mountains, California: Implications for Fault Growth and Earthquake RuptureJacobs, Joseph R. 01 May 2005 (has links)
The late Miocene Cedar Springs fault system is a high-angle transpressional system in the Silverwood Lake area, western San Bernardino Mountains, southern California. This thesis presents the study of oblique-slip faults with modest amounts of slip, which represent the early stages of fault development by using slip as a proxy for maturity. A structural and geochemical characterization is provided for six fault zones ranging from 39 m of slip to 3.5 km of offset in order to develop a model of fault zone geometry and composition. Basic geometric and kinematic results are provided for an additional 29 small-displacement (cm- to m-scale) faults. The main faults of this study can be divided into the fault core composed of sheared clay gouge and micro breccia, the primary damage zone made up of chemically altered rock with microstructural damage and grain-size reduction, and the secondary damage zone, which is characterized by an increased fracture density relative to the host rock. Although there appears to be a general increase in fault core thickness with increasing slip, the correlation is insignificant when analyzing all faults. Both the primary and secondary damage zones appear to thicken with increased slip on the main fault.
Overall, the structure and composition of the faults studied here are similar to those of larger strike-slip and reverse faults. This indicates that the fault core develops early in a fault's history. Subsequent slip appears to be focused along these narrow zones, with some deformation accumulating in the damage zone. Whole-rock geochemical analyses typically show a reduction in the abundance of Na, Al, K, and Ca in the fault core and primary damage zone relative to the host rock. This indicates enhanced fluid-rock interactions in these zones. Calculations of the energy consumed to produce the chemical alteration in the fault core indicate that a considerable amount of the total earthquake energy may be lost to alteration. This thesis concludes that fault processes are similar throughout the different stages of development, and the study of relatively small-displacement faults can therefore be used to understand fault evolution through time and the processes of larger faults in the brittle crust.
|
3 |
Gis Based Seismic Hazard Mapping Of TurkeyYunatci, Ali Anil 01 October 2010 (has links) (PDF)
Efficiency of probabilistic seismic hazard analysis mainly depends on the individual successes of its complementing components / such as source characterization and ground motion intensity prediction. This study contributes to major components of the seismic hazard workflow including magnitude &ndash / rupture dimension scaling relationships, and ground motion intensity prediction. The study includes revised independent models for predicting rupture dimensions in shallow crustal zones, accompanied by proposals for geometrically compatible rupture area-length-width models which satisfy the rectangular rupture geometry assumption. Second main part of the study focuses on developing a new ground motion prediction model using data from Turkish strong ground motion database. The series of efforts include, i) compilation and processing of a strong motion dataset, ii) quantifying parameter uncertainties of predictive parameters such as magnitude and source to site distance / and predicted accelerations due to uncertainty in site conditions and response, as well as uncertainty due to random orientation of the sensor, iii) developing a ground response model as a continuous function of peak ground acceleration and shear wave velocity, and finally, iv) removing bias in predictions due to uneven sampling of the dataset. Auxiliary components of the study include a systematic approach to source characterization problem, with products ranging from description of systematically idealized and documented seismogenic faults in Anatolia, to delineation, magnitude-recurrence parameterization, and selection of maximum magnitude earthquakes. Last stage of the study covers the development of a custom computer code for probabilistic seismic hazard assessment which meets the demands of modern state of practice.
|
4 |
Loading and Material Constraints on the Strain Rate Dependence of Brittle Damage FabricsSmith, Zachary Daniel January 2021 (has links)
No description available.
|
5 |
Coupled High-Order Finite Difference and Unstructured Finite Volume Methods for Earthquake Rupture Dynamics in Complex GeometriesO'Reilly, Ossian January 2011 (has links)
The linear elastodynamic two-dimensional anti-plane stress problem, where deformations occur in only one direction is considered for one sided non-planar faults. Fault dynamics are modeled using purely velocity dependent friction laws, and applied on boundaries with complex geometry. Summation-by-parts operators and energy estimates are used to couple a high-order finite difference method with an unstructured finite volume method. The unstructured finite volume method is used near the fault and the high-order finite difference method further away from the fault where no complex geometry is present. Boundary conditions are imposed weakly on characteristic form using the simultaneous approximation term technique, allowing explicit time integration to be used. Numerical computations are performed to verify the accuracy and time stability, of the method.
|
Page generated in 0.0672 seconds