• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 133
  • 60
  • 26
  • 20
  • 18
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Influence of copper on resistance of Lumbricus terrestris to bacterial challenge

Simmons, Carla Stull 08 1900 (has links)
Earthworms, Lumbricus terrestris, were challenged orally and intracoelomically with two bacterial species, Aeromonas hydrophila and Pseudomonas aeruginosa, and mortality rates were observed. Neither were found to be particularly pathogenic at injected doses of up to 108 bacteria per earthworm. The influence of Cu++ (as CuSO4) on the earthworm's response to bacterial challenge was investigated by exposing earthworms to sublethal levels of Cu++ prior to bacterial challenge. Exposure at sublethal concentrations up to 3 m g/cm2 did not have a pronounced influence on host resistance to challenge as measured by earthworm mortality. Cu++ increased the earthworm's ability to agglutinate rabbit erythrocytes, indicating that Cu++ exposure caused coelomocyte death, autolysis and release of agglutinins into the coelom, possibly explaining resistance to bacterial challenge.
42

Earthworm populations found near Adelaide, and their influence on the fertility of the soil : thesis submitted for the Degree of Doctor of Philosophy

Barley, K. P. January 1958 (has links) (PDF)
Includes bibliographical references.
43

Assessment of platinum mine tailings storage facilities : an ecotoxicological perspective / Mandy T. Jubileus

Jubileus, Mandy Theresa January 2008 (has links)
South Africa is one of the most important mining countries in the world, hosting the world's largest reserves of platinum group metals (PGMs). Even though mining is clearly an important activity in South Africa, contributing approximately US$ 7.4 billion annually to the countries' gross domestic product (GDP), the costs to the environment are not insignificant. One of the most severe environmental aspects associated with mining is the storage of mineral waste on tailings storage facilities due to their impacts on air quality, ground water quality, aesthetics and land use. It is also unknown whether the environmental effects of tailings storage facilities increase or decrease over time. The aim of this study was to determine the ecotoxicity of platinum tailings storage facilities of different ages by means of soil physical and chemical analysis, earthworm ecotoxicological studies, dehydrogenase activity and soil mesofauna studies. Samples were obtained from three platinum tailings storage facilities of different ages of which two were already rehabilitated while the third was still operational at the time this study was performed. The latter was used as a negative control for the purpose of the study. Soil samples were physically and chemically analysed. Earthworm ecotoxicological studies were conducted to determine changes in biomass, reproduction, mortality, neutral red retention times and tissue metal concentrations. Dehydrogenase activity was determined before the introduction of earthworms and manure, after introductions of manure and after introductions of earthworms and manure. Soil mesofauna were extracted and identified in order to determine species richness, diversity, abundance and functional grouping. Soil chemical analysis indicated that concentrations of certain heavy metals, especially chrome (Cr), present in platinum tailings materials could have a potential effect on microorganisms, microbial processes and earthworms. Earthworm ecotoxicological results indicated that earthworms that bioaccumulated higher levels of heavy metals showed poor hatchability of cocoons. Dehydrogenase activity indicated that earthworms play a significant role in increasing the number and biomass of soil microbes because significant increases in dehydrogenase activity were noticed after the addition of earthworms to platinum tailings materials. Results from the earthworm ecotoxicological studies, dehydrogenase activity, and soil mesofauna composition indicated that environmental impacts of tailings storage facilities did not increase with age, but is more likely to be an indication of the rehabilitation measures administered to the different tailings storage facilities. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2009.
44

The effects of multi-walled carbon nanotube exposure on soil organisms

Martin, William J. January 2012 (has links)
With the rapid proliferation of carbon nanotube technologies and consumer products comes a need to research the toxicological and ecotoxicological effects of these materials. This research attempted to develop a baseline knowledge of the effects of bulk, unmodified multi-walled carbon nanotubes on commonly studied soil toxicology test organisms: earthworms, springtails, and agricultural plants. In order to minimize confounding factors in the study, a slurry composed of bulk multi-walled carbon nanotubes, silica sand, and water was used to amend test soil without the use of surfactants or functionalization. Analysis of data produced by these experiments showed no significant trends resulting from the exposure of the test organisms to artificial soil amended by the multi- walled carbon nanotube slurry. It was observed, however that carbon nanotubes accumulated in the gut of the earthworm Eisenia andrei and were expelled as castings in the test soil.
45

Assessment of platinum mine tailings storage facilities : an ecotoxicological perspective / Mandy T. Jubileus

Jubileus, Mandy Theresa January 2008 (has links)
South Africa is one of the most important mining countries in the world, hosting the world's largest reserves of platinum group metals (PGMs). Even though mining is clearly an important activity in South Africa, contributing approximately US$ 7.4 billion annually to the countries' gross domestic product (GDP), the costs to the environment are not insignificant. One of the most severe environmental aspects associated with mining is the storage of mineral waste on tailings storage facilities due to their impacts on air quality, ground water quality, aesthetics and land use. It is also unknown whether the environmental effects of tailings storage facilities increase or decrease over time. The aim of this study was to determine the ecotoxicity of platinum tailings storage facilities of different ages by means of soil physical and chemical analysis, earthworm ecotoxicological studies, dehydrogenase activity and soil mesofauna studies. Samples were obtained from three platinum tailings storage facilities of different ages of which two were already rehabilitated while the third was still operational at the time this study was performed. The latter was used as a negative control for the purpose of the study. Soil samples were physically and chemically analysed. Earthworm ecotoxicological studies were conducted to determine changes in biomass, reproduction, mortality, neutral red retention times and tissue metal concentrations. Dehydrogenase activity was determined before the introduction of earthworms and manure, after introductions of manure and after introductions of earthworms and manure. Soil mesofauna were extracted and identified in order to determine species richness, diversity, abundance and functional grouping. Soil chemical analysis indicated that concentrations of certain heavy metals, especially chrome (Cr), present in platinum tailings materials could have a potential effect on microorganisms, microbial processes and earthworms. Earthworm ecotoxicological results indicated that earthworms that bioaccumulated higher levels of heavy metals showed poor hatchability of cocoons. Dehydrogenase activity indicated that earthworms play a significant role in increasing the number and biomass of soil microbes because significant increases in dehydrogenase activity were noticed after the addition of earthworms to platinum tailings materials. Results from the earthworm ecotoxicological studies, dehydrogenase activity, and soil mesofauna composition indicated that environmental impacts of tailings storage facilities did not increase with age, but is more likely to be an indication of the rehabilitation measures administered to the different tailings storage facilities. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2009.
46

Assessment of platinum mine tailings storage facilities : an ecotoxicological perspective / Mandy T. Jubileus

Jubileus, Mandy Theresa January 2008 (has links)
South Africa is one of the most important mining countries in the world, hosting the world's largest reserves of platinum group metals (PGMs). Even though mining is clearly an important activity in South Africa, contributing approximately US$ 7.4 billion annually to the countries' gross domestic product (GDP), the costs to the environment are not insignificant. One of the most severe environmental aspects associated with mining is the storage of mineral waste on tailings storage facilities due to their impacts on air quality, ground water quality, aesthetics and land use. It is also unknown whether the environmental effects of tailings storage facilities increase or decrease over time. The aim of this study was to determine the ecotoxicity of platinum tailings storage facilities of different ages by means of soil physical and chemical analysis, earthworm ecotoxicological studies, dehydrogenase activity and soil mesofauna studies. Samples were obtained from three platinum tailings storage facilities of different ages of which two were already rehabilitated while the third was still operational at the time this study was performed. The latter was used as a negative control for the purpose of the study. Soil samples were physically and chemically analysed. Earthworm ecotoxicological studies were conducted to determine changes in biomass, reproduction, mortality, neutral red retention times and tissue metal concentrations. Dehydrogenase activity was determined before the introduction of earthworms and manure, after introductions of manure and after introductions of earthworms and manure. Soil mesofauna were extracted and identified in order to determine species richness, diversity, abundance and functional grouping. Soil chemical analysis indicated that concentrations of certain heavy metals, especially chrome (Cr), present in platinum tailings materials could have a potential effect on microorganisms, microbial processes and earthworms. Earthworm ecotoxicological results indicated that earthworms that bioaccumulated higher levels of heavy metals showed poor hatchability of cocoons. Dehydrogenase activity indicated that earthworms play a significant role in increasing the number and biomass of soil microbes because significant increases in dehydrogenase activity were noticed after the addition of earthworms to platinum tailings materials. Results from the earthworm ecotoxicological studies, dehydrogenase activity, and soil mesofauna composition indicated that environmental impacts of tailings storage facilities did not increase with age, but is more likely to be an indication of the rehabilitation measures administered to the different tailings storage facilities. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2009.
47

The effects of multi-walled carbon nanotube exposure on soil organisms

Martin, William J. January 2012 (has links)
With the rapid proliferation of carbon nanotube technologies and consumer products comes a need to research the toxicological and ecotoxicological effects of these materials. This research attempted to develop a baseline knowledge of the effects of bulk, unmodified multi-walled carbon nanotubes on commonly studied soil toxicology test organisms: earthworms, springtails, and agricultural plants. In order to minimize confounding factors in the study, a slurry composed of bulk multi-walled carbon nanotubes, silica sand, and water was used to amend test soil without the use of surfactants or functionalization. Analysis of data produced by these experiments showed no significant trends resulting from the exposure of the test organisms to artificial soil amended by the multi- walled carbon nanotube slurry. It was observed, however that carbon nanotubes accumulated in the gut of the earthworm Eisenia andrei and were expelled as castings in the test soil.
48

The effect of forest to pasture conversion on soil biological diversity and function : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Applied Science at Lincoln University /

Lloyd, Davidson A. January 2008 (has links)
Thesis (M. Appl. Sc.) -- Lincoln University, 2008. / Also available via the World Wide Web.
49

Effects of earthworm burrowing on arsenic biotransformation and mobility implications for roxarsone-bearing poultry litter application /

Covey, Aaron K. January 2008 (has links)
Thesis (M. S. in Earth and Environmental Sciences)--Vanderbilt University, Dec. 2008. / Title from title screen. Includes bibliographical references.
50

Comparative Toxicity Responses in Earthworms Lumbricus Terrestris and Eisenia Foetida to Cadmium Nitrate and Chlordane Using Artificial Soil and Filter Paper Exposures

Muratti Ortiz, Joseph F. 08 1900 (has links)
This research compares LC50 and LD50 of earthworms, Lumbricus terrestris and Eisenia foetida exposed to cadmium nitrate and chlordane using 48-h contact filter paper (FP) and 14-d artificial soil (AS) protocols. Both LC50 and LD50 showed that chlordane was more toxic than cadmium in both species regardless of the exposure. The reference toxicant 2-chloroacetamide using the standardized 48-h FP exposure was used to assess the general response of the earthworm prior to toxicity experiments. A glucose test was developed as an internal standard to assess homogeneity of mixtures among both replicates and dilutions. Accuracy of dilutions is assessed by the slope of a regression line relating nominal dilution to observed internal standard concentration. Precision of replicate preparation is assessed by among replicate variance.

Page generated in 0.0375 seconds