Spelling suggestions: "subject:"eavesdropper"" "subject:"eavesdropping""
1 |
THE FUNCTION OF FINE-SCALE SIGNAL TIMING STRATEGIES: SYNCHRONIZED CALLING IN STREAM BREEDING TREE FROGSHenry D Legett (8803115) 06 May 2020 (has links)
In dense mating
aggregations, such as insect and anuran choruses, signals produced at the same
time can overlap and interfere with one another, reducing the ability of
receivers to discriminate between individual signals. Thus, evolution by sexual
selection is expected to result in mating signal timing strategies that avoid
overlap. Patterns of signal alternation between competing males are commonly
observed in leks and choruses across taxa. In some species, however, signalers
instead deliberately overlap, or ‘synchronize’, their mating signals with
neighboring conspecifics. Given the assumed high cost of reduced mate
attraction when signals overlap, mating signal synchronization has remained an
evolutionary puzzle. Synchronization may be beneficial, however, if overlapping
signals reduce the attraction of nontarget receivers (predator avoidance
hypothesis). Synchronized signals could also constructively interfere,
increasing female attraction to the mating aggregation (the beacon effect
hypothesis). I investigate these functions of synchronized signaling in two
species of tree frogs that synchronize their mating calls: the pug-nosed tree
frog (<i>Smilisca sila</i>) and the Ryukyu Kajika frog (<i>Buergeria japonica</i>).
To examine the trade-offs imposed by call synchronization in each species, I
conduct a series of field and laboratory playback experiments on target (female
frogs) and nontarget (eavesdropping predators) receivers of frog calls. Results
from these experiments support both hypotheses, suggesting that synchronized
frog calls can reduce the attraction of predators and attract mates to the
chorus. In addition, I found reduced preferences for fine-scale call timings in
female <i>S. sila</i> and <i>B. japonica</i>, deviating from the expected
preferences observed in many other anuran and non-anuran species. Thus, while
males may enjoy multiple benefits from synchronized mating signals, relaxed
sexual selection for non-synchronous signals may be key to the evolution and
maintenance of mating signal synchrony.
|
2 |
Wireless and Social Networks : Some Challenges and InsightsSunny, Albert January 2016 (has links) (PDF)
Wireless networks have potential applications in wireless Internet connectivity, battlefields, disaster relief, and cyber-physical systems. While the nodes in these networks communicate with each other over the air, the challenges faced by and the subsequent design criteria of these networks are diverse. In this thesis, we study and discuss a few design requirements of these networks, such as efficient utilization of the network bandwidth in IEEE 802.11 infrastructure networks, evaluating utility of sensor node deployments, and security from eavesdroppers.
The presence of infrastructure IEEE 802.11 based Wireless Local Area Networks (WLANs) allows mobile users to seamlessly transfer huge volumes of data. While these networks accommodate mobility, and are a cost-effective alternative to cellular networks, they are well known to display several performance anomalies. We study a few such anomalies, and provide a performance management solution for IEEE 802.11 based WLANs. On the other hand, in sensor networks, the absence of infrastructure mandates the use of adhoc network architectures. In these architectures, nodes are required to route data to gateway nodes over a multi-hop network. These gateway nodes are larger in size, and costlier in comparison with the regular nodes. In this context, we propose a unified framework that can be used to compare different deployment scenarios, and provide a means to design efficient large-scale adhoc networks.
In modern times, security has become an additional design criterion in wireless networks. Traditionally, secure transmissions were enabled using cryptographic schemes. However, in recent years, researchers have explored physical layer security as an alternative to these traditional cryptographic schemes. Physical layer security enables secure transmissions at non-zero data rate between two communicating nodes, by exploiting the degraded nature of the eavesdropper channel and the inherent randomness of the wireless medium. Also, in many practical scenarios, several nodes cooperate to improve their individual secrecy rates. Therefore, in this thesis, we also study scenarios, where cooperative schemes can improve secure end-to-end data transmission rates, while adhering to an overall power budget.
In spite of the presence of voluminous reservoirs of information such as digital libraries and the Internet, asking around still remains a popular means of seeking information. In scenarios where the person is interested in communal, or location-specific information, such kind of retrieval may yield better results than a global search. Hence, wireless networks should be designed, analyzed and controlled by taking into account the evolution of the underlying social networks. This alliance between social network analysis and adhoc network architectures can greatly advance the design of network protocols, especially in environments with opportunistic communications. Therefore, in addition to the above mentioned problem, in this thesis, we have also presented and studied a model that captures the temporal evolution of information in social networks with memory.
|
3 |
Information Leakage Neutralization for the Multi-Antenna Non-Regenerative Relay-Assisted Multi-Carrier Interference ChannelHo, Zuleita, Jorswieck, Eduard, Engelmann, Sabrina 21 October 2013 (has links) (PDF)
In heterogeneous dense networks where spectrum is shared, users' privacy remains one of the major challenges. On a multi-antenna relay-assisted multi-carrier interference channel, each user shares the spectral and spatial resources with all other users. When the receivers are not only interested in their own signals but also in eavesdropping other users' signals, the cross talk on the spectral and spatial channels becomes information leakage. In this paper, we propose a novel secrecy rate enhancing relay strategy that utilizes both spectral and spatial resources, termed as information leakage neutralization. To this end, the relay matrix is chosen such that the effective channel from the transmitter to the colluding eavesdropper is equal to the negative of the effective channel over the relay to the colluding eavesdropper and thus the information leakage to zero. Interestingly, the optimal relay matrix in general is not block-diagonal which encourages users' encoding over the frequency channels. We proposed two information leakage neutralization strategies, namely efficient information leakage neutralization (EFFIN) and local-optimized information leakage neutralization (LOPTIN). EFFIN provides a simple and efficient design of relay processing matrix and precoding matrices at the transmitters in the scenario of limited power and computational resources. LOPTIN, despite its higher complexity, provides a better sum secrecy rate performance by optimizing the relay processing matrix and the precoding matrices jointly. The proposed methods are shown to improve the sum secrecy rates over several state-of-the-art baseline methods.
|
4 |
Resource Allocation in Wireless Networks for Secure Transmission and Utility MaximizationSarma, Siddhartha January 2016 (has links) (PDF)
Resource allocation in wireless networks is one of the most studied class of problems. Generally, these problems are formulated as utility maximization problems under relevant constraints. The challenges posed by these problems vary widely depending on the nature of the utility function under consideration.
Recently, the widespread prevalence of wireless devices prompted researchers and engineers to delve into the security issues of wireless communication. As compared to the wired medium, ensuring security for the wireless medium is more challenging mainly due to the broadcast nature of the transmission. But the ongoing research on physical layer security promises robust and reliable security schemes for wireless communication. Contrary to conventional cryptographic schemes, physical layer security techniques are impregnable as the security is ensured by the inherent randomness present in the wireless medium.
In this thesis, we consider several wireless scenarios and propose secrecy enhancing resource allocation schemes for them in the first few chapters. We initially address the problem of secure transmission by following the conventional approach in the secrecy literature|secrecy rate maximization. Needless to say, in these chapters, secrecy rate is the utility function and the constraints are posed by the available power budget. Then we consider a pragmatic approach where we target the signal-to-noise ratio (SNR) of participating nodes and ensure information secrecy by appropriately constraining the SNRs of those nodes. In those SNR based formulations, SNR at the destination is the utility function and we are interested in maximizing it. In the last two chapters, we study two scenarios in a non-secrecy setting. In one of them, end-to-end data rate is the utility, whereas, in the other one, two utility functions|based on revenue generated|are defined for two rational agents in a game-theoretic setting.
In the second chapter, we study parallel independent Gaussian channels with imperfect
channel state information (CSI) for the eavesdropper. Firstly, we evaluate the probability of zero secrecy rate in this system for (i) given instantaneous channel conditions and (ii) a Rayleigh fading scenario. Secondly, when non-zero secrecy is achievable in the low SNR regime, we aim to solve a robust power allocation problem which minimizes the outage probability at a target secrecy rate.
In the third, fourth and fifth chapters, we consider scenarios where the source node transmits a message to the destination using M parallel amplify-and-forward (AF) relays in the presence of a single or multiple eavesdroppers.
The third chapter addresses the problem of the maximum achievable secrecy rate for two specific network models: (a) degraded eavesdropper channel with complex channel gain and (b) scaled eavesdropper channel with real-valued channel gains. In the fourth chapter, we consider the SNR based approach and address two problems: (i) SNR maximization at the destination and (ii) Total relay power minimization. In the fifth chapter, we assume that the relay nodes are untrusted and to counter them, we deliberately introduce artificial noise in the source message. For this model, we propose and solve SNR maximization problems for the following two scenarios: (i) Total power constraint on all the relay nodes and (ii) Individual power constraints on each of the relay nodes.
In the sixth chapter, we address the problem of passive eavesdroppers in multi-hop wire-less networks using the technique of friendly jamming. Assuming decode-and-forward (DF) relaying, we consider a scheduling and power allocation (PA) problem for a multiple-source multiple-sink scenario so that eavesdroppers are jammed, and source-destination throughput targets are met. When channel state information (CSI) of all the node are available, we intend to minimize the total power consumption of all the transmitting nodes. In the absence of eavesdroppers CSI, we minimize vulnerability region of the network.
In chapter seven, the problem of cooperative beamforming for maximizing the achievable data rate of two-hop amplify-and-forward (AF) network (in the absence of eavesdropper(s)) is considered. Along with an individual power constraint on each of the relay nodes, we consider a weighted sum power constraint. To solve this problem, we propose a novel algorithm based on the Quadratic Eigenvalue Problem (QEP) and discuss its convergence.
In chapter eight, we study a Stackelberg game between a base station and a multi-antenna power beacon for wireless energy harvesting in a multiple sensor node scenario. Assuming imperfect CSI between the sensor nodes and the power beacon, we propose a utility function that is based on throughput non-outage probability at the base station. We find the optimal strategies for the base station and the power beacon that maximize their respective utility functions.
|
5 |
Information Leakage Neutralization for the Multi-Antenna Non-Regenerative Relay-Assisted Multi-Carrier Interference ChannelHo, Zuleita, Jorswieck, Eduard, Engelmann, Sabrina January 2013 (has links)
In heterogeneous dense networks where spectrum is shared, users' privacy remains one of the major challenges. On a multi-antenna relay-assisted multi-carrier interference channel, each user shares the spectral and spatial resources with all other users. When the receivers are not only interested in their own signals but also in eavesdropping other users' signals, the cross talk on the spectral and spatial channels becomes information leakage. In this paper, we propose a novel secrecy rate enhancing relay strategy that utilizes both spectral and spatial resources, termed as information leakage neutralization. To this end, the relay matrix is chosen such that the effective channel from the transmitter to the colluding eavesdropper is equal to the negative of the effective channel over the relay to the colluding eavesdropper and thus the information leakage to zero. Interestingly, the optimal relay matrix in general is not block-diagonal which encourages users' encoding over the frequency channels. We proposed two information leakage neutralization strategies, namely efficient information leakage neutralization (EFFIN) and local-optimized information leakage neutralization (LOPTIN). EFFIN provides a simple and efficient design of relay processing matrix and precoding matrices at the transmitters in the scenario of limited power and computational resources. LOPTIN, despite its higher complexity, provides a better sum secrecy rate performance by optimizing the relay processing matrix and the precoding matrices jointly. The proposed methods are shown to improve the sum secrecy rates over several state-of-the-art baseline methods.
|
Page generated in 0.035 seconds