• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • Tagged with
  • 15
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multiscale Structures and Mechanics of Biomineralized Lattices in Hexactinellid sponges and Echinoderms

Chen, Hongshun 30 June 2023 (has links)
Biomineralized lattice materials with have high mineral contents (~ 99 wt%), usually "conceal" multiscale structural arrangements for unique mechanical or functional performance, such as the remarkable damage tolerance despite of the brittle nature of the constituents (e.g., biogenic silica and calcite). However, the quantitative explorations of the structure-mechanics relationships in multiscale of biomineralized lattices remain insufficient and hence hinder the leverage of the functional benefits to design architected cellular materials. In this dissertation, I selected two groups of marine animals (i.e., Hexactinellid sponges and Echinoderms) for systematic structural-mechanical study. Their biomineralized lattice skeletons exhibit three representative types of multiscale structures: 1) multiscale hierarchical structure: skeleton of Hexactinellid sponge such as Euplectella aspergillum; 2) multiscale functionally graded structure: spine of sea urchin Heterocentrotus mammillatus; and 3) dual-scale (atomic and microlattice scales) periodic structure: ossicle of starfish Protoreaster nodosus. This dissertation develops quantitatively the structural-mechanical/functional correlations in biomineralized cellular materials for bio-inspired material design. Four different species of Hexactinellid sponges have been studied with particular focus on the species E. aspergillum. As an example of the multiscale hierarchical biomineralized lattice, the extremely lightweight skeleton (~99% porosity) of E. aspergillum exhibits 1) amorphous nanoparticular biogenic silica; 2) micron-sized fibrous spicule with cylindrically laminated silica layers separated by organic interfaces; 3) spicule bundles where the individual spicules merged by secondary silica deposition; 4) a centimeter-sized Voronoi-like cellular dome known as sieve plate; and 5) a centimeter-sized cylindrically arranged rectangular lattice with double-diagonal reinforcement and external helical ridge. Here, we discovered a series of mechanical or functional properties or formation process of structures in different length scales: 1) for the biogenic silica in three different species of Hexactinellid sponge, consistent modulus and hardness of the biogenic silica throughout the cross section of the spicule are found via substantial correlation between the measured values and locations; 2) for the sieve plate, the Voronoi-like cellular dome constructed by porous branch with increased height achieves balance between improved mechanical stiffness and large pore opening for sponge's current pumping mechanism; 3) via microstructural study, the formation process of the sieve plate is proposed; and 4) for the cylindrical skeletal body, the double-diagonal configuration and the ridge structure are found to provide tendency to optimize torsional rigidity, and enhanced radial stiffening and improved permeability, respectively. The cellular structure in the spine of the H. mammillatus (i.e., stereom) made of ~99wt% of single-crystalline calcite shows a multiscale functionally graded structure. We developed and optimized a cellular network analysis workflow on the large-volume 3D lattice structure obtained from the synchrotron-based micro-Computed Tomography scan. The analysis provides quantitative descriptions of the branch, ring structure, and septum which reveals a functionally graded structure in multiscale from the center region to the edge region of the spine: 1) in microscale, the branch thickness and length increases, resulting in a significantly decreased porosity; and 2) in macroscale, the center region of the spine with galleried stereom of highly aligned branches transits to the edge region with laminar stereom of radially arranged septa and interconnecting branches. The multiscale structural variations lead to the mechanical variations the increased elastic modulus and mechanical isotropy from the center to the edge of the spine. This provides a biological pathway for designing the lightweight, strong, and tough beam with multiscale structural gradient. In previous work, we discovered that ossicle in starfish P. nodosus possesses a unique dual-scale periodic lattice structure, which means periodic single crystal calcite in nanoscale and diamond triply periodic minimal surface (diamond-TPMS) lattice in microscale. It has three unique structural features: 1) microlattice dislocations in ossicles similar to those found in crystals with diamond cubic lattice; 2) a diamond-TPMS microlattice with ca. 50% relative density; and 3) dual-scale crystallographic coalignment between c-axis of the single-crystalline constituent calcite and the [111] direction of the diamond-TPMS microlattice. Based on this work, this dissertation mainly reveals: 1) unique type and core structures of the dislocations in the ossicle for stiffness, strength, and toughness; 2) the 3D property compensation of dual-scale crystallographic coalignment for improved mechanical isotropy; and 3) mechanical benefits (improved mechanical isotropy and effective fragment jamming) and morphological benefits (minimal surface and highest surface area to volume ratio) for 50% relative density. / Doctor of Philosophy / Architected lattice materials, featured by their tailorable 3D multiscale architectures, achieve unique mechanical properties such as breaking the trade-off between strength and toughness, and mechanical isotropy reaching theoretical limit. In nature, as a result of evolutionary driving force, the biomineralized skeletons of the animals such as sea sponge, sea urchin, and starfish usually delicately control the architectural arrangements in different length scales and provide excellent templates for the design of architected lattices with desirable properties. Quantitative understanding of the 3D multiscale structures and mechanics of these natural biomineralized lattices allows the development of bio-inspired materials that are, for example, simultaneously stiff, strong, and tough. This dissertation establishes the quantitative structural-mechanical/functional relationships in multiscale of three biomineralized lattices with high mineral contents (~99 wt%) and a wide range of porosity (50~99 vol%) in Hexactinellid sponges with main emphasis on species (Euplectella aspergillum), sea urchin Heterocentrotus mammillatus, and starfish Protoreaster nodosus. They are selected for their representative multiscale structures, i.e., multiscale hierarchical structure, multiscale functionally graded structure, and dual-scale (i.e., atomic and microlattice scales) periodic structure, respectively. Study of these biomineralized lattices significantly improve our understanding of the biological strategies in structural arrangement and pave the way towards bio-inspired modeling to leverage the mechanical benefits.
12

From a fossil assemblage to a paleoecological community – Time, organisms and environment based on the Kaili Lagerstätte (Cambrian), South China and coeval deposits of exceptional preservation

Lin, Jih-Pai 10 December 2007 (has links)
No description available.
13

Mechanical Design of Selected Natural Ceramic Cellular Solids

Yang, Ting 24 May 2021 (has links)
While the structure and mechanical properties of natural cellular solids such as wood and trabecular bone have been extensively studied in the past, the structural design and underlying deformation mechanisms of natural cellular solids with very high mineral contents (> 90 wt%), which we term as natural ceramic cellular solids, are largely unexplored. Many of these natural ceramic cellular solids, despite their inherent brittle constituent biominerals (e.g., calcite or aragonite), exhibit remarkable mechanical properties, such as high stiffness and damage tolerance. In this thesis, by carefully selecting three biomineralized skeletal models with distinctly different cellular morphologies, including the honeycomb-like structure in cuttlefish bone (or cuttlebone), the stochastic open-cell structure in sea urchin spines, and the periodic open-cell structure in starfish ossicles, I systematically investigate the mechanical design strategies of these natural ceramic cellular solids. The three model systems are cuttlefish Sepia officinalis, sea urchin Heterocentrotus mammillatus, and starfish Protoreaster nodosus, respectively. By investigating the relationship between their mechanical properties and structural characteristics, this thesis reveals some novel structural design strategies for developing lightweight, tough, strong, and stiff ceramic cellular solids. The internal skeleton of S. officinalis, also known as cuttlebone, has a porosity of 93 vol% (constituent material: 90 wt% aragonite), which is a multichambered structure consisting of horizontal septa and thin vertical walls with corrugated cross-sectional profiles. Through systematic ex-situ and synchrotron-based in-situ mechanical measurements and collaborative computational modeling, we reveal that the vertical walls in the cuttlebone exhibit an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness (8.4 MN∙m/kg) and high energy absorption (4.4 kJ/kg). Moreover, the distribution of walls reduces stress concentrations within the horizontal septa, facilitating a larger chamber crushing stress and more significant densification. For the stochastic open-cell foam-like structure, also known as stereom (porosity: 60-80 vol%, constituent material: 99 wt% calcite) in H. mammillatus, we first developed a computer vision-based algorithm that allows for quantitative analysis of the cellular network of these structures at both local individual branch and node level as well as the global network level. This open-source algorithm could be used for analyzing both biological and engineering open-cell foams. I further show that the smooth, highly curved branch morphology with near-constant surface curvature in stereom results in low-stress concentration, which further leads to dispersed crack formation upon loading. Combined synchrotron in-situ analysis, electron microscopic analysis, and computational modeling further reveal that the fractured branches are efficiently jammed by the small throat openings within the cellular structure. This further leads to the formation of damage bands with densely packed fracture pieces. The continuous widening of the damage bands through progressive microfracture of branches at the boundaries contributes to the observed high plateau stress during compression, thereby contributing to its high energy absorption (17.7 kJ/kg), which is comparable and even greater than many synthetic metal- and polymer-based foams. Lastly, this thesis leads to the discovery of a unique dual-scale single-crystalline porous lattice structure (porosity: 50 vol%, constituent material: 99 wt% calcite) in the ossicles of P. nodosus. At the atomic level, the ossicle is composed of single-crystal biogenic calcite. At the lattice level, the ossicle's microstructure organizes as a diamond-triply periodic minimal surface (TPMS) structure. Moreover, the crystallographic axes at atomic and lattice levels are aligned, i.e., the c-axis of calcite is aligned with the [111] direction of the diamond-TPMS lattice. This single crystallinity co-alignment at two levels mitigates the compliance of calcite in the c-axis direction by utilizing the stiff <111> direction of the diamond-TPMS lattice. Furthermore, 3D in-situ mechanical characterizations reveal that the presence of crystal defects such as 60° and screw dislocations at the lattice level suppresses slip-like fracture along the {111} planes of the calcitic diamond-TPMS lattice upon loading, achieving an enhanced energy absorption capability. Even though the skeleton of echinoderm is made up of single-crystal calcite, the structure fractures in a conchoidal manner rather than along the clipping plane, which can continuously fracture the fragments into small pieces and enhance energy dissipation. / Doctor of Philosophy / The application of engineering ceramic cellular solids as structural components is limited by their brittleness and flaw sensitivity. In contrast, nature has evolved ceramic cellular materials such as sea sponge, sea urchin spine, and diatom shells that are simultaneously lightweight, strong, and damage-tolerant. These properties are thought to be achieved by the structure design of the component of those materials. Learning design strategies from these natural ceramic cellular solids is significant for developing lightweight bio-inspired ceramic materials with improved mechanical performance. In this thesis, I investigated mechanical design strategies from natural ceramic cellular solids in three model systems, i.e., cuttlebone from cuttlefish Sepia officinalis, spines from sea urchin Heterocentrotus mammillatus, ossicles from starfish Protoreaster nodosus. These three natural ceramic porous solids have high mineral content in the constituent materials (> 90 wt%) and have a highly porous structure (porosity: 50 vol%-93 vol%). These three model systems are selected to represent the analogs of three typical structure forms of synthetic cellular solids, i.e., honeycomb-like structures, stochastic and periodic open-cell structures, respectively. This thesis aims to establish a quantitative relationship between the 3D multiscale structure and deformation/toughening behavior for these selected natural ceramic cellular solids via a combination of different experimental and computational approaches.
14

Développement du squelette du crinoïde Florometra serratissima et évolution des protéines de la matrice de spicules chez les ambulacraires

Comeau, Ariane 08 1900 (has links)
Les crinoïdes sont bien connus pour leurs fossiles, mais la biominéralisation de leurs stades larvaires n’est que peu documentée. La première partie du projet présente le développement des ossicules des trois stades larvaires du comatule Florometra serratissima : doliolaria, cystidienne et pentacrinoïde. Les ossicules du crinoïde démontraient de la plasticité phénotypique et de la désynchronisation dans leur développement. Les crinoïdes étant la classe basale des échinodermes modernes, ceci porte à croire que ces traits étaient aussi caractéristiques des échinodermes ancestraux et auraient joué un rôle dans la radiation hâtive et la grande disparité des échinodermes. Pour notre deuxième étude, comme les patrons de morphologie des crinoïdes et des autres échinodermes sont nombreux et sont régulés par des protéines spécifiques, nous avons vérifié la présence de quatre familles de protéines de la matrice de spicules (SMAP) connues chez les oursins dans les transcriptomes des autres échinodermes et d’autres deutérostomes. La famille des spicules matrix (SM) et l’anhydrase carbonique CARA7LA étaient absentes chez tout autre organisme que les oursins, les protéines spécifiques au mésenchyme (MSP130) étaient présentes en nombres différents chez tous les ambulacraires suggérant de multiples duplications et pertes, et les métalloprotéases étaient nombreuses chez chacun. Le développement des ossicules chez les échinodermes est un sujet qui a gagné en popularité au cours des dernières décennies, spécialement chez les oursins, et inclure les crinoïdes dans ce type d’étude permettra de nous renseigner sur l’origine et l’évolution des échinodermes modernes. / While the fossil record of crinoids is widespread and largely known, biomineralization of their larval stages is poorly documented. The first part of the project focuses on the ossicle development of the three larval stages of the feather star Florometra serratissima: doliolaria, cystidean and pentacrinoid. The ossicles of the crinoid showed phenotypic plasticity and asynchronous development. Crinoids form the basal class of living echinoderms; this prompts one to believe that these traits were also characteristic of the ancestral echinoderms and would have played a role in the early radiation and large disparity of the modern echinoderms. For the second study, as patterns of morphology of crinoids and of other echinoderms are numerous and are regulated by specific proteins, we verified the presence of four families of spicule matrix associated proteins (SMAPs) known among sea urchins in transcriptomes of the other echinoderms and deuterostomes. The family of spicule matrix (SMs) proteins and the carbonic anhydrase CARA7LA were absent in any other organism aside from sea urchins, mesenchyme specific proteins (MSP130s) were present in varying numbers in all ambulacrarians suggesting multiple duplications and losses and matrix metalloproteases were numerous in every organisms. The development of ossicles in echinoderms is a topic that has gained popularity in the last decades, especially in sea urchins, and including crinoids in this type of study will inform us about the origin and evolution of the modern echinoderms.
15

Évaluation de la toxicité de pesticides sur quatre niveaux trophiques marins : microalgues, échinoderme, bivalves et poisson / Pesticide toxicity assessment using marine organisms from four trophic levels : micro-algae, echinoderm, bivalves and fish

Amara, Anis 21 June 2012 (has links)
L’objectif de ce travail de thèse vise à analyser les effets de quelques pesticides et d’un adjuvant sur des organismes marins, représentatifs de quatre niveaux trophiques, à savoir des micro-algues, un échinoderme, des bivalves et un poisson. L’analyse de la pollu-sensibilité est basée sur l’utilisation de différents bio-essais existants ou adaptés au contexte de cette étude.Les tests de toxicité ont permis d’évaluer la sensibilité de trois espèces phytoplanctoniques (Chaetoceros calcitrans, Isochrysis aff. Galbana et Tetraselmis suecica) vis-à-vis d’un fongicide l’époxiconazole (pur et en formulation commerciale Opus) et de l’adjuvant nonylphénol. D’une manière générale, la croissance de C. calcitrans et I. aff. Galbana s’avère plus sensible à l’action des contaminants étudiés. Ainsi, en utilisant pour C. calcitrans un milieu reproduisant les conditions naturelles du Golfe de Gabès, des valeurs de CE50 de 2 ,31 mg/L et 2,9 μg/l sont obtenues respectivement avec la substance active époxiconazole, et le produit formulé. Ces résultats montrent l’importance des adjuvants dans la toxicité et que les micro-algues peuvent être sensibles aux effets non-cibles d’un fongicide triazole.En outre, l’âge des cellules, les conditions d’éclairement et de composition des milieux de culture induisent des changements de sensibilité au fongicide, suggérant que la densité cellulaire est un paramètre important dans les tests de toxicité.L’analyse de quelques paramètres physiologiques montre que les contaminants utilisés induisent une augmentation du volume cellulaire, des échanges gazeux, de la teneur en pigments et en ATP. Il apparaît ainsi que les toxiques utilisés réduisent la vitesse de croissance, prolongeant le cycle cellulaire, sans affecter la production de nouveaux matériaux, nécessaires à la construction de nouvelles cellules.Par ailleurs, une étude réalisée en microcosmes lors d’un bloom de l’algue toxique Karenia selliformis dans le golfe de Gabès, montre que les différents contaminants chimiques (époxiconazole, chlorpyriphos-éthyl, nonylphénol) produisent des modifications drastiques de la structure des communautés phytoplanctoniques, fonction de la nature et de la concentration du contaminant.La toxicité des différents contaminants a été étudiée sur des animaux marins, aux stades embryo-larvaire (oursin, huître, palourde), métamorphose des larves (palourde) et survie des larves (turbot). Les résultats montrent que les larves du turbot sont les plus sensibles à l’action des contaminants avec des CE50 allant de 2,78 à 492 μg/L selon le toxique et que chez la palourde, la métamorphose est le stade le plus sensible parmi les trois stades de développement étudiés. Les contaminants utilisés produisent des anomalies du développement et des malformations embryonnaires qui peuvent induire une réduction de la production naturelle en agissant i) directement sur le développement embryo-larvaire et ii) indirectement sur la qualité et la biodisponibilité de l’aliment à travers la variation de la biomasse phytoplanctonique. Ces résultats soulignent la nécessité d’appliquer les toxiques à différents organismes marins présentant des organisations différentes pour apprécier pleinement leur impact. / This work aims to study the effects of a few pesticides and one adjuvant on marine organisms, representatives of four trophic levels : micro-algae, echinoderm, bivalves and fish. Analysis of the pollu-sensitivity was based on the utilisation of existing bio-assays or adapted to this study.Phytotoxic assessments were conducted on three phytoplanktonic species (Chaetoceros calcitrans, Isochrysis aff. Galbana et Tetraselmis suecica) using the fungicide epoxiconazole and the adjuvant nonylphenol. Sensitivity to these toxicants of C. calcitrans and I. aff. Galbana was high. Thus, when C. calcitrans was grown in a medium simulating pre-winter conditions in Gabès Gulf, EC50 values were respectively, 2.31 mg/L and 2.9 μg/L for epoxiconazole active ingredient and epoxiconazole-formulated. These results questioned the use of ecotoxicological data obtained solely using active molecules of pesticides rather the complete formulation and show that non-target micro-algae may be affected by a triazole fungicide.Moreover, cell age, light and nutrient composition induced changes in epoxiconazole sensitivity, suggesting that cellular density is an important parameter in toxicity tests.Analysis of a few physiological parameters show that contaminants used in this study induce an increase of pigment content, ATP synthesis, and rates of oxygen exchanges while the cell volume enlarges. Consequently, the toxicants might reduce the growth rate, by a prolongation of the cell cycle without affecting the production of new material for the construction of new cells.Bioassays were conducted using microcosms during a bloom of the toxic algae Karenia selliformis in the Gulf of Gabès. The different toxicants (epoxiconazole, chlorpyrifos-éthyl, nonyphenol) produced drastic changes in the phytoplankton communities, depending on the type and concentration of the contaminant.Phytotoxic assessments were conducted on marine animal models, using different developmental stages: embryo-larval development (sea urchin, oyster, and clam), metamorphosis larvae (clam) and larvae survival (turbot). Results show that turbot larvae are most sensitive to the action of contaminants with EC50 values ranging from 2.78 to 492 μg/L depending on the toxic and that the metamorphosis is the stage the most sensitive of the three stages of development of clam studied.The pollutants produced developmental and embryonic abnormalities that might induce a reduction in the natural production by acting i) directly on the development of the marine organisms and ii) indirectly on the quality and bioavailability of food through the variation of phytoplankton biomass.These results underline the need to study pollutant effects on marine organisms having different organizations to evaluate their full impact.

Page generated in 0.1377 seconds