Spelling suggestions: "subject:"echograms"" "subject:"tachogram""
1 |
Reakce ryb při vzorkování vlečnými sítěmi / Fish behaviour in response to a trawl gearSAJDLOVÁ, Zuzana January 2012 (has links)
Předkládaná práce by měla čtenáře blíže seznámit s chováním ryb, které tito živočichové vykazují vůči vlečným sítím během vzorkování pelagiálu vodních těles. Zaměřuje se na oblast v ústí tralu, kde je spektrum reakcí nejširší. Některé specifické rysy chování jsou uvedeny na příkladech z mezinárodních výzkumů v teoretické části. Jsou zde rovněž přiblíženy základní techniky, používané při studiu chování ryb ve vztahu k vlečným sítím. Praktickou částí je dvouletý výzkum (2009 a 2011) chování ryb na českých údolních nádržích Želivka a Římov ve vztahu k tralovým sítím. Chování ryb v ústí pelagického tralu bylo monitorováno prostřednictvím vertikálního sonaru SIMRAD EK 60 o frekvenci 38 kHz. Předmětem výzkumu bylo studium reakcí jednotlivých ryb se zaměřením na vertikální složku jejich pohybu. Zjišťovali jsme rozdíly mezi denní a noční aktivitou ryb, rychlost a sklon ve vodním sloupci, přímočarost trajektorie pohybu, souvislost mezi velikostí ryb a jejich rychlostí, a v neposlední řadě také vliv abiotických faktorů, které únikové chování podstatně ovlivňují. Znalost tohoto typu chování pomůže vypovědět o selektivitě zařízení, kterou je vhodné znát pro efektivní průzkum zdejších nádrží. Stejně tak užitečné jsou nové informace o vlastním chování ryb, které jsou přínosem nejen pro ekologii.
|
2 |
Fish orientation along the longitudinal profile of the Rimov reservoir / Fish orientation along the longitudinal profile of the Rimov reservoirTUŠER, Michal January 2007 (has links)
The aim of this work was to verify the assumption of random fish orientation in the lacustrine zone of the ``canyon-shaped{\crqq} Rimov reservoir and to compare distributions of fish orientation in the lacustrine and tributary zone. The study confirmed that most fish were oriented randomly in the lacustrine zone of the reservoir, whereas in the tributary fish moved predominantly in parallel with the longitudinal axis of reservoir.
|
3 |
Automatic classification of fish and bubbles at pixel-level precision in multi-frequency acoustic echograms using U-Net convolutional neural networksSlonimer, Alex 05 April 2022 (has links)
Multi-frequency backscatter acoustic profilers (echosounders) are used to measure biological and physical phenomena in the ocean in ways that are not possible with optical methods. Echosounders are commonly used on ocean observatories and by commercial fisheries but require significant manual effort to classify species of interest within the collected echograms. The work presented in this thesis tackles the challenging task of automating the identification of fish and other phenomena in echosounder data, with specific application to aggregations of juvenile salmon, schools of herring, and bubbles of air that have been mixed into the water.
U-Net convolutional neural networks (CNNs) are used to accomplish this task by identifying classes at the pixel level. The data considered here were collected in Okisollo Channel on the coast of British Columbia, Canada, using an Acoustic Zooplankton and Fish Profiler at four frequencies (67.5, 125, 200, and 455 kHz). The entrainment of air bubbles and the behaviour of fish are both governed by the surrounding physical environment. To improve the classification, simulated channels for water depth and solar elevation angle (a proxy for sunlight) are used to encode the CNNs with information related to the environment providing spatial and temporal context. The manual annotation of echograms at the pixel level is a challenging process, and a custom application was developed to aid in this process. A relatively small set of annotations were created and are used to train the CNNs. During training, the echogram data are divided into randomly-spaced square tiles to encode the models with robust features, and into overlapping tiles for added redundancy during classification. This is done without removing noise in the data, thus ensuring broad applicability. This approach is proven highly successful, as evidenced by the best-performing U-Net model producing F1 scores of 93.0%, 87.3% and 86.5% for herring, salmon, and bubble classes, respectively. These models also achieve promising results when applied to echogram data with coarser resolution.
One goal in fisheries acoustics is to detect distinct schools of fish. Following the initial pixel level classification, the results from the best performing U-Net model are fed through a heuristic module, inspired by traditional fisheries methods, that links connected components of identified fish (school candidates) into distinct school objects. The results are compared to the outputs from a recent study that relied on a Mask R-CNN architecture to apply instance segmentation for classifying fish schools. It is demonstrated that the U-Net/heuristic hybrid technique improves on the Mask R-CNN approach by a small amount for the classification of herring schools, and by a large amount for aggregations of juvenile salmon (improvement in mean average precision from 24.7% to 56.1%). / Graduate
|
Page generated in 0.0465 seconds