• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rising Carbon Dioxide Levels and Forest Management (Climate Change and Variability in the Southwest Ecosystem Series)

Jones, Chris, Lenart, Melanie 08 1900 (has links)
4 pp. / Climate Change and Variability in Southwest Ecosystems Series / Several environmental factors are changing, including the global rise in atmospheric CO2 concentrations and global warming. These environmental changes portend needed changes in the future management of forests in the Southwestern U.S. Therefore, University of Arizona Extension Agents organized a Workshop in Sedona, AZ, in February, 2005, targeted at Southwest forest managers. This paper presents facts from one of the presentations at that workshop and summarizes what the direct effects of the increased CO2 concentrations are likely to be on future tree growth. It is expected that the growth of most trees will be stimulated by the higher CO2 concentrations but variations in response among species will alter competition among species. The fact sheet also speculates about what the implications may be for future forest management. This research benefits the forest industry, as well as the many consumers of forest products.
2

Preparing for offshore renewable energy development in the Mediterranean

Bray, Laura January 2017 (has links)
The development of offshore wind farms and marine renewable energy devices in the Mediterranean is central to both national, and international, energy strategies for countries bordering the Mediterranean Sea. The ecological impacts of marine renewable energy development in the Mediterranean region, although essential for policy makers, are as yet unknown. The Northern Adriatic is identified as a plausible site for offshore wind farm development. Using the wider region (Adriatic and Northern Ionian) as a case study, this thesis examines the likely impact to the marine environment if an offshore wind farm is established. Site suitability, based on wind speed, bathymetry, and larvae connectivity levels are investigated along with the plausibility of the turbines operating as artificial reefs in the area. As offshore wind farms may alter the larval connectivity and supply dynamics of benthic populations, a connectivity map was constructed to identify areas of high and low connectivity in the Adriatic Sea. The Puglia coast of Italy is a likely larval sink, and displays some of the highest connectivity within the region, suggesting potential inputs of genetic materials from surrounding populations. Considering offshore wind farms could operate as artificial reefs, an in-situ pilot project was established to simulate the presence of wind turbines. Macroinvertebrates colonized the new substrata within the first few months but were lower in abundance when compared to a natural hard substrata environment. Time, turbine location, and the material used for turbine construction all affected the macro-invertebrate communities. In addition, fish abundances, and diversity were lower around the simulated OWF foundations in comparison to a natural hard substrata environment, and no increases in fish abundance occurred around the simulated turbines when compared to reference sites of soft substrata. This observation was validated with the use of an ecosystem modelling software (Ecopath with Ecosim), which simulated the overall ecosystem level impacts that would occur if 50 offshore monopile wind turbines were introduced to the Northern Ionian and colonized by macroinvertebrate communities. When compared to the baseline scenario (no simulated introduction of an OWF), the introduction of new habitat had no discernible impacts to the structure or functioning of the marine ecosystem. Noticeable changes to the ecosystem were only apparent if fishing restrictions were enforced in parallel with the simulated offshore wind farm; the ecosystem appears to become more structured by top down predation. In addition seabirds are also impacted by the reduction of fishing discards as a food source. These results are the first attempt to quantify the suspected benefits of offshore wind farms operating as de-facto marine protected areas.

Page generated in 0.08 seconds