Spelling suggestions: "subject:"écoulement interne"" "subject:"l'écoulement interne""
1 |
Développement d'une méthode numérique compressible pour la simulation de la cavitation en géométrie complexe.Bergerat, Lionel 17 December 2012 (has links) (PDF)
La cavitation est un phénomène de changement de phase dans les zones de basses pressions des machines hydrauliques. Ses conséquences sont souvent néfastes : pertes de performances, génération de bruit et de vibrations, abrasion des matériaux... Ces effets deviennent une préoccupation importante dans la conception des machines hydrauliques. Ce travail a pour objectif principal de développer un modèle de simulation numérique pour la simulation de la cavitation à haut ordre de précision, pour des écoulements compressibles visqueux, et pour des géométries complexes. Le modèle adopté pour la modélisation de la cavitation est le modèle de mélange homogène. Cette formulation ne dépend d'aucun paramètre empirique et peut être aisément étendu à du multi-espèce. Nous utilisons un code de volumes finis, dont le haut ordre de reconstruction est assuré par la méthode des moindres carrés mobiles.
|
2 |
Développement d’une méthode numérique compressible pour la simulation de la cavitation en géométrie complexe. / On the cavitation modeling using compressible Navier-Stokes equations and a high-resolution finite volume schemeBergerat, Lionel 17 December 2012 (has links)
La cavitation est un phénomène de changement de phase dans les zones de basses pressions des machines hydrauliques. Ses conséquences sont souvent néfastes : pertes de performances, génération de bruit et de vibrations, abrasion des matériaux... Ces effets deviennent une préoccupation importante dans la conception des machines hydrauliques. Ce travail a pour objectif principal de développer un modèle de simulation numérique pour la simulation de la cavitation à haut ordre de précision, pour des écoulements compressibles visqueux, et pour des géométries complexes. Le modèle adopté pour la modélisation de la cavitation est le modèle de mélange homogène. Cette formulation ne dépend d'aucun paramètre empirique et peut être aisément étendu à du multi-espèce. Nous utilisons un code de volumes finis, dont le haut ordre de reconstruction est assuré par la méthode des moindres carrés mobiles. / Cavitation is a phase change phenomenon, wich occurs in low pressure areas in hydraulic systems. Its consequences are often harmful and undesired : it causes loss of efficiency, noise and vibration generation, and structural abrasion... These effects become a major preoccupation in the conception of hydraulic systems. The main objective of this work is to develop a numerical tool for the numerical modelisation of cavitation at high orders of accuracy, for compressible and viscous flows, in complex geometries. The model used for the modelisation of the cavitation is the homogeneous mixture model, wich formulation is independent of empirical parameters, and is easily extendable for multi-spieces flows. We use a finite volume developped in the DynFluid laboratory, in wich the high accuracy order of reconstruction is obtained using the Moving Least Square approximation.
|
3 |
LES of atomization and cavitation for fuel injectors / Simulation aux grandes échelles de l'atomisation et de la cavitation dans le cadre des injections de carburantAhmed, Aqeel 06 September 2019 (has links)
Cette thèse présente la Simulation des Grandes Echelles (LES) de l’injection, de la pulvérisation et de la cavitation dans un injecteur pour les applications liées aux moteurs à combustion interne. Pour la modélisation de l’atomisation, on utilise le modèle ELSA (Eulerian Lagrangian Spray Atomization). Le modèle résout la fraction volumique du combustible liquide ainsi que la densité de surface d’interface liquide-gaz pour décrire le processus complet d’atomisation. Dans cette thèse, l’écoulement à l’intérieur de l’injecteur est également pris en compte pour une étude ultérieure de l’atomisation. L’étude présente l’application du modèle ELSA à un injecteur Diesel typique, à la fois dans le contexte de RANS et de LES.Le modèle est validé à l’aide de données expérimentales disponibles dans Engine Combustion Network (ECN). Le modèle ELSA, qui est normalement conçu pour les interfaces diffuses (non résolues), lorsque l’emplacement exact de l’interface liquide-gaz n’est pas pris en compte, est étendu pour fonctionner avec une formulation de type Volume of Fluid (VOF) de flux à deux phases, où l’interface est explicitement résolu. Le couplage est réalisé à l’aide de critères IRQ (Interface Resolution Quality), qui prennent en compte à la fois la courbure de l’interface et la quantité modélisée de la surface de l’interface. Le modèle ELSA est développé en premier lieu en considérant les deux phases comme incompressibles. L’extension à la phase compressible est également brièvement étudiée dans cette thèse. Il en résulte une formulation ELSA compressible qui prend en compte la densité variable de chaque phase. En collaboration avec l’Imperial College de Londres, la formulation de la fonction de densité de probabilité (PDF) avec les champs stochastiques est également explorée afin d’étudier l’atomisation. Dans les systèmes d’injection de carburant modernes, la pression locale à l’intérieur de l’injecteur tombe souvent en dessous de la pression de saturation en vapeur du carburant, ce qui entraîne une cavitation. La cavitation affecte le flux externe et la formulation du spray. Ainsi, une procédure est nécessaire pour étudier le changement de phase ainsi que la formulation du jet en utilisant une configuration numérique unique et cohérente. Une méthode qui couple le changement de phase à l’intérieur de l’injecteur à la pulvérisation externe du jet est développée dans cette thèse. Ceci est réalisé en utilisant le volume de formulation de fluide où l’interface est considérée entre le liquide et le gaz; le gaz est composé à la fois de vapeur et d’airambiant non condensable. / This thesis presents Large Eddy Simulation (LES) of fuel injection, atomization and cavitation inside the fuel injector for applications related to internal combustion engines. For atomization modeling, Eulerian Lagrangian Spray Atomization (ELSA) model is used. The model solves for volume fraction of liquid fuel as well as liquid-gas interface surface density to describe the complete atomization process. In this thesis, flow inside the injector is also considered for subsequent study of atomization. The study presents the application of ELSA model to a typical diesel injector, both in the context of RANS and LES. The model is validated with the help of experimental data available from Engine Combustion Network (ECN). The ELSA model which is normally designed for diffused (unresolved) interfaces, where the exact location of the liquid-gas interface is not considered, is extended to work with Volume of Fluid (VOF) type formulation of two phase flow, where interface is explicitly resolved. The coupling is achieved with the help of Interface Resolution Quality (IRQ) criteria, that takes into account both the interface curvature and modeled amount of interface surface. ELSA model is developed first considering both phases as incompressible, the extension to compressible phase is also briefly studied in this thesis, resulting in compressible ELSA formulation that takes into account varying density in each phase. In collaboration with Imperial College London, the Probability Density Function (PDF) formulation with Stochastic Fields is also explored to study atomization. In modern fuel injection systems, quite oftenthe local pressure inside the injector falls below the vapor saturation pressure of the fuel, resulting in cavitation. Cavitation effects the external flow and spray formulation. Thus, a procedure is required to study the phase change as well as jet formulation using a single and consistent numerical setup. A method is developed in this thesis that couples the phase change inside the injector to the external jet atomization. This is achieved using the volume of fluid formulation where the interface is considered between liquid and gas; gas consists of both the vapor and non condensible ambient air.
|
Page generated in 0.1173 seconds