• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inverse source problems and controllability for the stokes and navier-stokes equations

Montoya Zambrano, Cristhian David January 2016 (has links)
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / This thesis is focused on the Navier{Stokes system for incompressible uids with either Dirichlet or nonlinear Navier{slip boundary conditions. For these systems, we exploit some ideas in the context of the control theory and inverse source problems. The thesis is divided in three parts. In the rst part, we deal with the local null controllability for the Navier{Stokes system with nonlinear Navier{slip conditions, where the internal controls have one vanishing component. The novelty of the boundary conditions and the new estimates with respect to the pressure term, has allowed us to extend previous results on controllability for the Navier{ Stokes system. The main ingredients to build our result are the following: a new regularity result for the linearized system around the origin, and a suitable Carleman inequality for the adjoint system associated to the linearized system. Finally, xed point arguments are used in order to conclude the proof. In the second part, we deal with an inverse source problem for the N- dimensional Stokes system from local and missing velocity measurements. More precisely, our main result establishes a reconstruction formula for the source F(x; t) = (t)f(x) from local observations of N ����� 1 components of the velocity. We consider that f(x) is an unknown vectorial function, meanwhile (t) is known. As a consequence, the uniqueness is achieved for f(x) in a suitable Sobolev space. The main tools are the following: connection between null controllability and inverse problems throughout a result on null controllability for the N- dimensional Stokes system with N ����� 1 scalar controls, spectral analysis of the Stokes operator and Volterra integral equations. We also implement this result and present several numerical experiments that show the feasibility of the proposed recovering formula. Finally, the last chapter of the thesis presents a partial result of stability for the Stokes system when we consider a source F(x; t) = R(x; t)g(x), where R(x; t) is a known vectorial function and g(x) is unknown. This result involves the Bukhgeim-Klibanov method for solving inverse problems and some topics in degenerate Sobolev spaces.
2

Problemas inversos y controlabilidad en modelos de la mecánica de fluidos

Zamorano Aliaga, Sebastián Andrés January 2016 (has links)
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / Esta tesis doctoral está dedicada al estudio de problemas inversos y de control en el área de la mecánica de fluidos. Nos centramos en las ecuaciones de Stokes y de Navier Stokes, tanto sistemas estacionarios como evolutivos, los cuales son bien conocidos para el desarrollo matemático de los flujos viscosos incompresibles. En concreto, se analizaron tres temas principales: Realizamos la estimación del tamaño de una cavidad D inmersa en un dominio acotado Ω ⊂ Rd, d = 2, 3, lleno de un fluido viscoso el cual se rige por el sistema de Stokes, por medio de la velocidad y las fuerzas de Cauchy en la frontera ∂Ω. Más precisamente, establecemos una cota inferior y superior en términos de la diferencia entre las mediciones externas cuando el obstáculo está presente y cuando no lo está. La demostración del resultado se basa en los resultados de regularidad interior y estimaciones cuantitativas de continuación única para la solución del sistema de Stokes. Desarrollamos el estudio del fenómeno del turnpike que surge en el problema de control de seguimiento óptimo distribuido para las ecuaciones de Navier Stokes. Obtenemos una respuesta positiva a esta propiedad en el caso de que los controles son funciones dependientes del tiempo, y también cuando son independientes del tiempo. En ambos casos se prueba una propiedad de turnpike exponencial, bajo el supuesto que el estado óptimo estacionario satisface ciertas propiedades de pequeñez. Consideramos las ecuaciones de Stokes evolutivas con viscosidad no constante. En primer lugar adaptamos la construcción de soluciones del tipo óptica geométrica complejas apropiadas para una ecuación de Stokes estacionaria modificada, con el fin de demostrar un resultado de identificabilidad siguiendo el enfoque dado por Uhlmann [110] y de Heck et al. [62]. Luego, se estudia la identificabilidad global para la función de viscosidad por medio de mediciones de contorno reduciendo el problema al caso estacionario, cuando consideramos el horizonte de tiempo suficientemente grande. / Este trabajo ha sido financiado por CONICYT
3

Numerical study of hopf bifurcations in the two-dimensional plane poiseuille flow

Sánchez Casas, José Pablo 28 November 2002 (has links)
In this work we try to analyse the dynamics of the Navier-Stokes equations in a problem without domain complexities as is the case of the plane Poiseuille flow. The Poiseuille problem is described as the flow of a viscous incompressible fluid, in a channel between two infinite parallel plates. We have considered it in two dimensions for the most common boundary conditions used to drive the fluid: mean constant pressure gradient or constant flux through the channel. We also specify the relation between this two formulations.We give the details of the direct numerical solution of the full two-dimensional, time-dependent, incompressible Navier-Stokes equations, formulated by means of spectral methods on the spatial variables and finite differences for time. Unlike other authors we have considered the classical formulation in terms of primitive variables for velocity and pressure. We also describe the approach adopted to eliminate the pressure and the cross-stream component of the velocity, obtaining thus a reduced system of ordinary differential equations from an original system of differential-algebraic equations. This is translated to a reduction of two thirds in the dimension of the original system and, in addition, it allows us to study the stability of fixed points by means of the analytical Jacobian matrix.We reproduce previous calculations on travelling waves (which are time-periodic orbits) and its stability to superharmonic disturbances. These solutions are observed as stationary in a Galilean reference in the streamwise direction. We begin by reviewing some results of the Orr-Sommerfeld equation which serve as a starting point to obtain the bifurcating solutions of time-periodic flows for several values of the periodic length in the streamwise direction. In turn, we also calculate several Hopf bifurcations that appear on the branch of periodic flows, for both cases of imposed constant flux and pressure.Likewise, for each unstable periodic flow, we study the connection of its unstable manifold to other attracting solutions.Starting at the Hopf bifurcations found for periodic flows, we analyse the bifurcating branches of quasi-periodic solutions at the two first Hopf bifurcations for the case of imposed constant pressure and the first one for constant flux. Those solutions are found as fixed points of an appropriate Poincaré map since, by the symmetry of the channel, they may be viewed as periodic flows in an appropriate moving frame of reference. We also study their stability by analysing the linear part of the Poincaré map. In the case of constant flux we have found a branch of quasi-periodic solutions which, on increasing the Reynolds number, changes from stable to unstable, giving rise to an attracting family of quasi-periodic flows with 3 frequencies. The results referring to the first Hopf bifurcation for constant pressure, are not in qualitative agreement with those of Soibelman & Meiron (1991),which yield a different bifurcation picture and stability properties for the obtained quasi-periodic flows. From the computed unstable flows we follow their unstable invariant manifold and describe what new attracting solution they are conducted to.
4

Problemas de Interacción entre un Fluido Newtoniano Incomprensible y una Estructura

Schwindt, Erica Leticia January 2011 (has links)
En esta tesis se abordan dos problemas diferentes de interacción del tipo fluido-estructura en el caso tridimensional: en el primero de ellos realizamos un estudio teórico de un problema de interacción entre una estructura deformable y un fluido Newtoniano incompresible (Capítulo 2), y en el segundo, consideramos un problema inverso geométrico asociado a un cuerpo rígido inmerso en un fluido (Capítulo 3). Para el primer problema probamos un resultado de existencia y unicidad de soluciones fuertes considerando para la estructura elástica una aproximación finito-dimensional de la ecuación de la elasticidad lineal. En el segundo problema, demostramos un resultado de existencia y unicidad del correspondiente sistema fluido-estructura y probamos un resultado de identificabilidad: la forma de un cuerpo convexo y su posición inicial son identificadas, vía la medición, en algún tiempo positivo, del tensor de Cauchy del fluido sobre un subconjunto abierto de la frontera exterior. También un resultado de estabilidad es estudiado para este problema.

Page generated in 0.0759 seconds