• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Modeling on Cooperation in the Laboratory and in the Natural Environment

Siegel, Janice V. 01 May 1980 (has links)
In this study a multiple-baseline design was used to determine the effectiveness of three different modeling sequences in increasing cooperative behavior in children in a laboratory situation. The research also assessed the short- and long-term effects of the laboratory procedures on children's behavior in a free-play setting. Subjects were 9 pairs of preschool-aged children. In the laboratory situation pairs of subjects performed a block-stacking task which allowed them to respond either cooperatively or independently. Following baseline periods of varying lengths, the pairs of children were exposed to one of three videotapes of cooperative models. In Tape 1 adult models demonstrated cooperative behavior, but exhibited no verbal behavior. In Tape 2 the models made positive statements about cooperation contiguous with the demonstration of cooperative behavior. In Tape 3 the models demonstrated cooperation, made contiguous positive statements about cooperation, and in addition, they received differential positive reinforcement for cooperation. Although three of nine teams showed a significant increase in mutually cooperative responding, consistent multiple baseline control was not demonstrated. Therefore, it could not be conclusively stated that the videotaped cooperative models were effective in increasing children 1 s mutually cooperative responding in the laboratory. A significant increase in parallel play was noted between laboratory partners in free-play periods immediately following the laboratory sessions; however, this increased interaction was not obvious when 5-day and 6-week follow-up observations were made.
2

Investigation Of Geometrical Factors For Determining Fracture Toughness With The Modified Ring Test

Alpay, Ceyda 01 September 2008 (has links) (PDF)
Modified Ring specimens are of the shape of discs having a hole inside and flattened ends. These specimens are used for determination of Mode I fracture toughness. Finite element program, named ABAQUS, is used for numerical modeling for finding stress intensity factors. Varying disc geometries were used for the experiments and numerical modeling in which size of the flat ends, radius of the hole inside, and external radius of the specimen were varied. Experiments were done by using pink Ankara andesite. Effects of internal hole radius, external disc radius and size of the flat ends on both stress intensity factor and fracture toughness were studied. In order to compare the results, fracture tests with semi-circular specimens under three point bending (SCB) were also performed. From a similar previous study, fracture toughness values of gray andesite were recalculated and compared to the fracture toughness values of pink andesite for varying geometrical factors. Size effect studies were performed as well for varying diameter of core specimens.Fracture toughness values of andesite were found to increase with increasing specimen size. Fracture toughness of 100 mm specimens was determined as 1.11&plusmn / 0.07 MPa&amp / #8730 / m, whereas fracture toughness of 75 mm specimens was 0.96&plusmn / 0.08 MPa&amp / #8730 / m. 100 mm or larger diameter specimens were suggested for the fracture toughness determination with the modified ring tests.
3

A spatial approach to edge effect modelling for plantation forestry

Wise, Andre 12 1900 (has links)
Thesis (MScFor)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: One of the major objectives in plantation forestry is to achieve a high level of homogeneity of distribution and dimension of trees within the stand. Precise planting geometries, intensive silviculture and genetic selection are used to achieve this homogeneity. However, a natural variability is still introduced by micro-­‐site conditions and disturbances. A substantial source of variation is caused by edge effects of neighbouring stands or other land use forms. The edge effect causes trees at the stand edge to develop differently from trees in the interior of the stand. The overarching objective of this study is to simulate the edge effect based on average stand interior variables as typically received from an enumeration and spatial information on the current and historic stand neighbourhood. With re-­‐introducing this natural variance as well as its spatial pattern, we expect to derive improved planning information. A major aim is thus separating the effect of the edge interaction from the other factors contributing to stand variance and quantifying the result in terms of stand output. A methodology is introduced for quantifying interaction at stand edges between a given stand and its neighbouring stands over its lifetime. Transferring the edge interaction value from the edges to all the trees within the stand is then done by applying inverse distance weighting interpolation from the edges to the tree position within the stand. Once an edge interaction value has been calculated for each point, the extent of the edge effect is quantified. The spatial extent of the edge effect is derived empirically from an existing fully spatially mapped stand by means of breakpoint regression. The expected variance as a result of edge influence is then quantified by producing a set of models, which can reproduce the effect of the edge interaction on tree height, diameter and volume. The edge effect is treated as a dynamic interaction for which the temporal aspect needs to be considered, because the current spatial structure of a stand is influenced by its current neighbourhood, but also by the historic development of the neighbourhood in relation to the stand in question. Each stand therefore undergoes an edge effect which is completely unique to that stand, within a given time period. For this reason the presented methodology is a spatial-­‐temporal one, aimed at providing a way in which growth and yield forest modelling can be augmented by the inclusion of the edge effect in a practical way. To explicitly quantify edge effects, the natural variance had to be separated into a component explained by edge effect and a second component introduced by other factors such as micro site conditions and disturbance. The second component is treated as an unexplained residual variance. In order to provide a realistic simulation of a stand output at a finer, tree level, this second stand variance needs nonetheless to be quantified. The variance attributable to factors other than the edge effect is mimicked by generating a random number by means of a parameterised stochastic process based on the variance of the inner stand region, which is beyond the reach of the edge effect. In this way, a realistic spatial pattern of a plantation forest stand, taking into account the edge effect and combining it with the natural stand variance is achieved. This study, within the field of plantation forest management, aspires to land use optimization both in terms of productive capacity estimation and for the provision of information for effective land use management planning. It makes use of open source software resources namely the R framework and QGIS and explores aerial stereophotogrammetry as an option for data collection. / AFRIKAANSE OPSOMMING: Een van die hoofdoelwitte in plantasie bosbou praktyk is hoё vlakke van homogeniteit met betrekking tot die verspreiding en die dimensies van die bome in die plantasie opstand. Simetriese aanplantings, intensiewe bosboupraktyk en genetiese seleksie word gebruik om hierdie homogeniteit te verkry. Natuurlike verskille word egter nog steeds gevind as gevolg van groeiplek mikro toestande en ander versteurings in die opstand. Een van die hoofbronne van hierdie variasie is die randeffekte van buurplantasies en ander gebruike van grond. Hierdie randeffekte veroorsaak dat bome aan die rand van die opstand anders ontwikkel as die bome binne in die opstand. Die oorhoofse doelwit met hierdie navorsing is om die randeffekte te simuleer. Hierdie randeffekte is gegrond op die gemiddelde binneopstand boom veranderlikes soos afgelei uit die opmeting en uit ruimtelike inligting oor die huidige en geskiedkundige toestande in die omgewing. As hierdie natuurlike variasies asook die ruimtelike patrone weer in berekening gebring word, verwag ons om beter beplanningsinligting te bekom. ’n Belangrike doelwit tydens hierdie navorsing is dus om die effek van die rand-­‐interaksie te skei van die effek van ander faktore wat bydra tot variasies binne-­‐in die opstand en om die resultaat in terme van plantasie produksie te kwantifiseer. ’n Metodiek word voorgestel vir die kwantifisering van die interaksie op die rande tussen die opstand en die buuropstande tydens die leeftyd van die opstand. Die oorplasing van die rand interaksie waarde van die rand af na al die bome in die plantasie word dan gedoen deur om geweegde inverse afstand interpolasie vanaf die rand tot by die ligging van die boom, toe te pas. As die rand interaksie waarde vir elke punt bereken is, kan die omvang van die randeffek gekwantifiseer word. Die ruimtelike omvang van die rand effek is, met die gebruik van breekpunt regressie, empiries afgelei van ’n bestaande ten volle karteerde plantasie. Die verwagte variasie as gevolg van die randeffek word dan met die gebruik van ’n stel modelle gekwantifiseer, wat dan die effek van die rand interaksie op boomhoogte, deursnit en volume kan weergee. Die randeffek word as ’n dinamiese interaksie beskou waarvan die tydsaspek in ag geneem moet word, want die huidige ruimtelike struktuur van die plantasie word beïnvloed deur die huidige omgewing asook deur die historiese ontwikkeling van die omgewing met betrekking tot die opstand onder bespreking. Elke opstand ondergaan ’n randeffek wat uniek is aan daardie plantasie op die gegewe tydstip. Die doelwit is om ’n wyse te vind waarvolgens groei-­‐en-­‐opbrengs plantasie modellering deur die insluiting van randeffek op ’n praktiese wyse, aangevul kan word. Om hierdie rede is die aanbevole metodiek ruimtelik-­‐tydelik en gerig daarop om ’n wyse te vind waarvolgens groei-­‐en-­‐opbrengs modellering deur die insluiting van die randeffek, op ’n praktiese wyse aangevul kan word. Om randeffek eksplisiet te kwantifiseer, moes die natuurlike afwyking gedeel word in die komponent wat die gevolg is van die randeffek, en ’n tweede komponent wat die gevolg is van ander faktore soos mikroligging toestande en versteurings. Die tweede komponent word behandel as ’n onverklaarde oorblywende afwyking. Hierdie tweede plantasie afwyking moet nogtans kwantifiseer word om sodoende ’n realistiese simulasie van plantasie opbrengs op ’n fyner boom vlak te verkry. Die afwyking wat toegeskryf kan word aan faktore buiten die randeffek, word nageboots deur om ’n lukrake nommer (wat gebaseer word op die afwyking van die binne-­‐plantasie gebied wat buite die strekwydte van die randeffek is) deur middel van ‘n geparameteriseerde stogastiese proses te genereer. Sodoende word ’n realistiese ruimtelike patroon van ’n plantasie opstand verkry, wat die randeffek in ag neem en dit kombineer met die natuurlike plantasie afwyking.
4

Sub-Threshold Slope Modeling & Gate Alignment Issues In Tunnel Field Effect Transistor

Ramesha, A 08 1900 (has links)
The Tunnel Field Effect Transistor (TFET) with sub-60mV/decade Sub-threshold slope and extremely high ION/IOFF ratio has attracted enough attention for low standby power (LSTP) applications where the battery life is very important. So far research in this area has been limited to numerical simulation and experimental analysis. It is however extremely necessary to develop compact models for TFET in order to use them in nano-scale integrated circuit design and simulation. In this work, for the first time, we develop analytical Sub-threshold slope model for n-channel double gate TFET (nDGTFET). Unlike conventional FETs, current in TFET is mainly controlled by the band-to-band tunneling mechanism at source/channel interface. As the total drain current is proportional to band-to-band generation rate, the main challenge in the present work is to find an explicit relationship between average electric field over the tunneling path and the applied gate voltage under nonlocal tunneling condition. Two dimensional Poisson’s equation (with Laplace approximation)is first solved in a rectangular coordinate system in order to obtain analytical expression for electron energy distribution over the channel region.Kane’s Model[J. Phy. Chem.Solids 12(181)1959]for band-to-band tunneling along with some analytical approximation techniques are then used to derive the expression for the Sub-threshold slope under nonlocal tunneling conditions. This Sub-threshold slope model is verified against professional numerical device simulator (MEDICI) for different device geometries. Being an asymmetric device, TFET fabrication suffers from source misalignment with gate. As the doping in source and drain-gate are different, conventional-FET-like self-aligned gate stack formation is not possible for TFET. Such misalignment, at source side, seriously degrades the performance of TFETs. To overcome this problem, in this work we explore the possibility of using “gate replacement” technique for TFET fabrication. We first develop process flow for single gate bulk nTFET, and then we extend it to n-channel double gate TFET (nDGTFET) using modified FinFET process. Good alignments between source and gate are observed with TCAD-simulations in both the cases.

Page generated in 0.111 seconds