• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6290
  • 1792
  • 1667
  • 750
  • 381
  • 362
  • 336
  • 336
  • 336
  • 336
  • 336
  • 333
  • 240
  • 228
  • 201
  • Tagged with
  • 15104
  • 2053
  • 1443
  • 1199
  • 967
  • 875
  • 771
  • 673
  • 633
  • 551
  • 534
  • 521
  • 516
  • 510
  • 490
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
841

Effect of temperature on nervous threshold

Binder, Michael Joseph January 1975 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Biology, 1975. / Bibliography: leaves 42-44. / by Michael Binder. / M.S.
842

Tissue lipid variations under long term diethylstilbestrol administration

Ke, Tai-Lee January 2011 (has links)
Typescript. / Digitized by Kansas Correctional Industries
843

Study of radiation damage in stainless steel by Coulomb-excited Mössbauer spectroscopy

Wickberg, James Nils January 2011 (has links)
Typescript. / Digitized by Kansas Correctional Industries
844

Evaluation of bean cultivars under high temperature stress

Upson, Steven Douglas January 2011 (has links)
Photocopy of typescript. / Digitized by Kansas Correctional Industries
845

Preemergence herbicides for seeded nursery crops

Warmund, Michele Renee January 2011 (has links)
Digitized by Kansas Correctional Industries
846

Investigating charge trapping effects in organic field-effect transistors

Nasrallah, Iyad January 2015 (has links)
No description available.
847

Proteomics and histone modifications decipher the soybean response upon salinity stress.

January 2013 (has links)
鹽鹼化是世界上最主要非生物脅迫之一,它主要是由於土壤中的鹽(氯化鈉)過量積累所導致的, 不僅影響植物的生長而且也影響農作物的產量。大豆是世界上最重要的經濟類豆科植物之一,由於其種子內含有豐富的營養物質例如蛋白質,油,糖分和纖維,所以它為我們提供了極為重要和大量的油脂和蛋白。在鹽脅迫下大豆的產量會有明顯的降低。由於以上這些情況,我們希望搞清楚大豆對於鹽脅迫的反應機制。首先是通過蛋白質組學弄清楚鹽脅迫的生理過程和大豆如何耐受鹽脅迫的。一般來說,蛋白質組學包括了鑑定蛋白類的化合物和測量在生物系統中的蛋白含量的學科。近期,質譜的發展提供了一個去研究細胞內蛋白質的動態變化十分有用的平台。定量蛋白質組學的發展對於我們系統性的了解蛋白質的功能的分子是十分重要的並且預期會提供給我們各種生物過程和系統的分子機制的見解.其次,表觀遺傳性特別是組蛋白修飾。因為組蛋白修飾通過重新編排染色體的結構和組成參與了許多重要的生物過程並且這些翻譯後修飾對於植物的耐受鹽脅迫也發揮著十分重要的作用。因此我們希望了解組蛋白修飾是如何參與這一過程的。 / Salinity stress, which is caused by the accumulation of excessive amount of salts in the soil, is one of the most severe abiotic stresses that constraint not only crop plant growth but also crop productivity. Soybean (Glycine max) is one of the most important economical legume crops in the world because of its richness of nutritional compositions including protein, oil, sugar and fiber in the seed. Soybean yield of sensitive cultivars is decreased dramatically under salt stress. Because of this, we tried to figure out the mechanism of how soybean response to salinity stress. Firstly, Proteomics--to elucidate the affected physiological process in the salinity stress and the way to tolerant the stress. In general, proteomics involves the identification of protein components and the measurement of protein abundance in biological systems. Recent mass spectrometry (MS)-based technology developments have provided useful platforms for the study of quantitative changes in protein components within the cell. Quantitative proteomics is important for the system-based understanding of the molecular function of each protein component and expected to provide insights into molecular mechanisms of various biological processes and systems. Secondly, Epigenetics--particularly histone modifications. Because histone modifications play important roles in many fundamental biological processes by rearranging the structure and composition of chromatin and PTMs have more roles in response salinity stress. So we want to understand how PTMs involve in this process from epigenetics. / Detailed summary in vernacular field only. / Peng, Xu. / "October 2012." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 44-54). / Abstracts also in Chinese. / Thesis committee --- p.i / Declaration --- p.ii / Abstract (in English) --- p.iii / Abstract (in Chinese) --- p.iv / Acknowledgements --- p.v / Table of contents --- p.vi / General abbreviations --- p.vii / Chapter Chapter 1: --- Introduction --- p.1 / Chapter 1.1 --- Soybean --- p.1 / Chapter 1.2 --- Salinity stress and plants’ response to salinity stress --- p.1 / Chapter 1.3 --- Mass Spectrometry base Proteomics --- p.3 / Chapter 1.3.1 --- Introduction to proteomics --- p.3 / Chapter 1.3.2 --- Proteomic studies in plants --- p.5 / Chapter 1.4 --- Introduction to Epigenetics --- p.6 / Chapter 1.5 --- Present studies --- p.8 / Chapter Chapter 2 --- Proteomic studies in soybean --- p.9 / Chapter 2.1 --- Materials and methods --- p.9 / Chapter 2.1.1 --- Plant materials and stress treatment --- p.9 / Chapter 2.1.2 --- Protein extraction and nuclei extraction and histone isolation --- p.10 / Chapter 2.1.3 --- Protein Preparation for Mass Spectrometry --- p.11 / Chapter 2.1.4 --- Analysis of Protein using nanoLC-MS/MS and Data analysis --- p.12 / Chapter 2.2 --- Results and discussions --- p.13 / Chapter 2.2.1 --- One thousand two hundred seventeen proteins were identified by LC MS/MS-based proteomics technique --- p.13 / Chapter 2.2.2 --- Functional analyses of identified proteins --- p.22 / Chapter 2.2.3 --- One hundred sixty-three proteins are changed under salinity stress as identified by LC MS/MS-based proteomics technique --- p.26 / Chapter 2.2.4 --- Important stress relate proteins were identified by LC MS/MS-based proteomics technique --- p.30 / Chapter 2.2.5 --- Histone PTMs in soybean under salinity stress --- p.34 / Chapter Chapter 3 --- Conclusions and perspectives --- p.35
848

Brassinosteroids confer tolerance to plants under the nitrogen (N) starvation stress by enhancing low-N induced anthocyanin biosynthesis.

January 2011 (has links)
Jiang, Tiantian. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 61-75). / Abstracts in English and Chinese. / Thesis/Assessment Committee --- p.ii / Statement --- p.iii / Abstract --- p.iv / 摘要 --- p.v / Acknowledgements --- p.vi / List of Figures and Tables --- p.vii / Chapter Part 1 --- Introduction --- p.-0- / Chapter 1.1 --- Brassinosteriods (BRs) and BR signaling --- p.-0- / Chapter 1.1.1 --- Discovery of BRs --- p.-2- / Chapter 1.1.2 --- Functions of BRs --- p.-4- / Chapter 1.1.3 --- BR signaling pathway --- p.-6- / Chapter 1.2 --- Nitrogen (N) and N responses --- p.-10- / Chapter 1.2.1 --- Hormones involved in plant N responses --- p.-11- / Chapter 1.3 --- Anthocyanin and anthocyanin synthesis --- p.-13- / Chapter 1.3.1 --- Anthocyanin structures --- p.-13- / Chapter 1.3.2 --- Functions of anthocyanins --- p.-14- / Chapter 1.3.3 --- Biosynthesis of anthocyanins --- p.-14- / Chapter 1.3.4 --- Regulations of anthocyanin biosynthesis --- p.-15- / Chapter 1.4 --- Hormones and plant nutrient stresses --- p.-19- / Chapter Part 2 --- Materials and Methods --- p.-20- / Chapter 2.1 --- Plant materials and growth conditions --- p.-20- / Chapter 2.2 --- Measurement of anthocyanin content --- p.-21- / Chapter 2.3 --- Yeast two-hybrid (Y2H) assay --- p.-22- / Chapter 2.4 --- Bimolecular fluorescence complementation (BiFC) assays --- p.-23- / Chapter 2.5 --- Quantitative real-time PCR --- p.-25- / Chapter 2.6 --- Electrophoretic mobility shift assay (EMSA) and competition assay --- p.-26- / Chapter 2.7 --- Histochemical staining of GUS activity --- p.-28- / Chapter Part 3 --- Results --- p.-29- / Chapter 3.1 --- 24-epibrassinolide (24-eBR) increases plant tolerance to N-starvation in Arabidopsis - --- p.-29- / Chapter 3.2 --- BR treatment enhances anthocyanin accumulation under N deprivation conditions --- p.-31- / Chapter 3.3 --- BZR1 interacts with PAP1 in vitro and in vivo --- p.-35- / Chapter 3.4 --- BR and BZR1 promote the expression of the 'late' anthocyanin biosynthetic genes during N deprivation - --- p.-39- / Chapter 3.5 --- BZR1 binds to the promoter of DFR --- p.-43- / Chapter 3.6 --- BR-enhanced anthocyanin accumulation is specific to N-deprivation --- p.-46- / Chapter 3.7 --- BZR1 differently regulates PAP1 and PAP2 --- p.-48- / Chapter 3.8 --- Endogenous GL3 is required for BR-enhanced anthocyanin biosynthesis --- p.-52- / Chapter 3.9 --- N status affects the expression of BR biosynthetic gene CPD --- p.-52- / Chapter Part 4 --- Discussion --- p.-54- / Chapter 4.1 --- BRs confer plant tolerance to low-N stress and the tolerance is mediated by BR enhancement of low-N-induced anthocyanin biosynthesis --- p.-54- / Chapter 4.2 --- BRs enhance anthocyanin accumulation under N starvation through BZR1-PAP1 interaction or direct control of the expression of anthocyanin biosynthetic genes --- p.-55- / Chapter 4.3 --- BRs are specifically involved in low-N induced anthocyanin production --- p.-56- / Chapter 4.4 --- Transcription factors that specifically control BR-regulated anthocyanin biosynthesis --- p.-57- / Chapter 4.5 --- DFR is an important target of BR-regulation of anthocyanin biosynthesis --- p.-58- / Chapter Part 5: --- Conculsions --- p.-59- / Chapter Part 6: --- References --- p.-61-
849

An inositol phosphatase from soybean that can alleviate salt stress.

January 2012 (has links)
大豆的豐富營養和經濟價值使它成為重要的農產品。但是,土壤鹽漬化影響著大豆的產量。這個問題在沿岸地方特別嚴重。若要改善大豆的耐鹽能力,必先增加對大豆耐鹽機理的了解。 / 本實驗室從大豆中發現了一個受鹽脅迫誘導表達的基因GmSAL1。以往透過體外酶反應分析法, GmSAL1蛋白被介定為一個能作用於1,4,5-三磷酸肌醇 (IP₃) 的肌醇磷酸-5-磷酸酶。這有別於在擬南芥中的SAL1同源蛋白AtSAL1, AtSAL1是一個肌醇磷酸-1-磷酸酶。由於IP₃是信號傳導途徑中的重要分子,本課題對與IP₃信號及耐鹽性相關的GmSAL1蛋白功能進行研究。 / 本課題旨在:(一) 研究GmSAL1對於細胞質內IP₃的累積的體內作用; (二) 研究 GmSAL1 在脫落酸 (ABA) 的信號傳導中的可能角色; (三) 研究 GmSAL1 在鹽脅迫下的保護作用。 / 本研究利用體內報告系統證明了 GmSAL1 對於減少細胞質內IP₃的累積的作用。這種影響IP₃水平的功能減弱了由 ABA 信號所引起的氣孔關閉和種子萌發抑制。利用 GmSAL1 轉基因煙草細胞 (BY-2) 和擬南芥,證明 GmSAL1 在鹽脅迫下起著短暫的保護作用。GmSAL1在鹽脅迫下的保護功能可能是由於蒸騰作用的局部恢復和細胞鈉離子區室化的作用。 / 本研究展示了肌醇信號,ABA信號和鹽脅迫反應三者之間的關係。這是在以前的研究中未被清楚闡釋的。 / Soybean is nutritionally and economically important. However, high soil salinity, particularly in coastal regions, impedes the production of soybean. Understanding the salt tolerance mechanism is the first step towards the enhancement of salt tolerance of soybean. / Our laboratory identified a salt-responsive gene from soybean namely GmSAL1. Previous in vitro enzyme assay suggested that the GmSAL1 protein is an inositol 5’-phopsphatase acting on inositol 1,4,5-trisphosphate (IP₃), which is different from the enzymatic activity reported for the SAL1 homologue (AtSAL1) in Arabidopsis thaliana (A. thaliana) which is an inositol 1-phopsphatase. Since IP₃ is an important molecule involved in signal transduction pathways, this project is to explore the in vivo functions of GmSAL1 in relation to IP3 signaling and salinity tolerance. / The specific objectives of this research are (1) to study the in vivo role of GmSAL1 on cytosolic IP₃ accumulation; (2) to study the possible involvement of GmSAL1 in ABA signaling; (3) to study the protective roles of GmSAL1 under salt stress. / In this project, the function of GmSAL1 to reduce cytosolic IP₃ was demonstrated using an in vivo reporter system. This activity on IP₃ levels reduced the sensitivity of stomatal closure and seed germination inhibition mediated by ABA signals. A transient protection effect against the ionic effect under salt stress by GmSAL1 was shown by gain-of-function tests in transgenic BY-2 cells and transgenic A. thaliana. The protective effect conferred by GmSAL1 may be due to a partial resuming of transpiration through reduction of ABA signals and compartmentalization of Na⁺ into vacuoles. / The study of GmSAL1 in this research demonstrated the link among inositol signaling, ABA signaling, and salinity response which was not well addressed in previous reports. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Ku, Yee Shan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 97-104). / Abstracts also in Chinese. / Statement --- p.i / Abstract --- p.ii / 摘要 --- p.iv / Acknowledgements --- p.v / General Abbreviations --- p.vii / Abbreviations of Chemicals --- p.ix / Table of Contents --- p.xi / List of Figures --- p.xviii / List of Tables --- p.xxi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- General introduction to salinity and agriculture --- p.1 / Chapter 1.1.1 --- Adverse effects of salinity on plants --- p.2 / Chapter 1.1.1.1 --- Osmotic stress --- p.2 / Chapter 1.1.1.2 --- Ionic stress --- p.3 / Chapter 1.1.1.3 --- Separation of ionic effect from osmotic effect --- p.3 / Chapter 1.1.1.4 --- Oxidative stress --- p.4 / Chapter 1.1.2 --- Major physiological responses of plants to achieve salt tolerance --- p.5 / Chapter 1.1.2.1 --- Maintenance of cellular ion homeostasis --- p.5 / Chapter 1.1.2.2 --- Balance between Na⁺ and K⁺ influx --- p.5 / Chapter 1.1.2.3 --- Efflux of Na⁺ from cell --- p.9 / Chapter 1.1.2.4 --- Enhanced compartmentalization of Na⁺ and Cl⁻ in vacuole --- p.11 / Chapter 1.1.2.5 --- Enhanced vacuolar ion compartmentalization --- p.13 / Chapter 1.1.2.6 --- Biosynthesis of osmolytes --- p.13 / Chapter 1.2 --- Signal transduction under salt stress --- p.14 / Chapter 1.2.1 --- General introduction to signal transduction under salt stress --- p.14 / Chapter 1.2.2 --- ABA signaling under salinity --- p.15 / Chapter 1.2.2.1 --- General introduction to ABA signaling --- p.15 / Chapter 1.2.2.2 --- IP₃ and ABA signaling --- p.16 / Chapter 1.2.2.3 --- Introduction to inositol phosphate --- p.16 / Chapter 1.2.2.4 --- Phosphatidylinositol-3-monophosphate --- p.18 / Chapter 1.2.2.5 --- Phosphatidylinositol-4-monophosphate --- p.18 / Chapter 1.2.2.6 --- Phosphatidylinositol-5-monophosphate --- p.18 / Chapter 1.2.2.7 --- Phosphatidylinositol (3,5) bisphosphate --- p.19 / Chapter 1.2.2.8 --- Phosphatidylinositol (4,5) bisphosphate --- p.19 / Chapter 1.2.2.9 --- Inositol (1,4,5) trisphosphate (IP₃) --- p.19 / Chapter 1.2.2.10 --- Inositol metabolism under salt stress --- p.19 / Chapter 1.2.2.11 --- The involvement of IP₃ in ABA signaling --- p.20 / Chapter 1.2.3 --- General introduction to Ca²⁺ signaling --- p.22 / Chapter 1.2.4 --- Ca²⁺ channels --- p.23 / Chapter 1.2.4.1 --- Ligand-gated Ca²⁺ channels --- p.23 / Chapter 1.2.4.1.1 --- IP₃ gated Ca²⁺ channels --- p.23 / Chapter 1.2.4.1.2 --- Cyclic nucleotide gated channels (CNGCs) --- p.24 / Chapter 1.2.4.1.3 --- Glutamate receptor homologs (GLRs) --- p.24 / Chapter 1.2.4.2 --- Voltage-gated Ca2⁺ channels --- p.25 / Chapter 1.2.4.2.1 --- Two-pore channels (TPCs) --- p.25 / Chapter 1.2.4.2.2 --- Mechanosensitive Ca2²⁺permeable channels (MSCCs) --- p.25 / Chapter 1.2.4.2.3 --- Ca²⁺ and ABA signaling --- p.26 / Chapter 1.2.5 --- ABA, IP₃ and Ca²⁺ signaling --- p.26 / Chapter 1.2.5.1 --- Ca²⁺ signaling under salt stress --- p.30 / Chapter 1.2.5.2 --- Ca²⁺ signal mediated cellular responses --- p.30 / Chapter 1.3 --- Introduction to inositol phosphatases --- p.30 / Chapter 1.3.1 --- Previous studies on inositol phosphatases in plant --- p.33 / Chapter 1.3.1.1 --- Inositol polyphosphate 1-phosphatase --- p.33 / Chapter 1.3.1.2 --- Inositol polyphosphate 5-phosphatase --- p.34 / Chapter 1.4 --- Previous research on GmSAL1 in Prof. Hon-Ming Lam’s lab --- p.37 / Chapter 1.5 --- Objective and Significance of this project --- p.38 / Chapter Chapter 2 --- Materials and methods --- p.39 / Chapter 2.1 --- Materials --- p.39 / Chapter 2.1.1 --- Plants, bacterial strains and vectors --- p.39 / Chapter 2.1.2 --- Chemicals and enzymes --- p.40 / Chapter 2.1.3 --- Buffer, medium and solution --- p.41 / Chapter 2.1.4 --- Primers --- p.41 / Chapter 2.1.5 --- Equipments and facilities --- p.44 / Chapter 2.1.6 --- Software --- p.44 / Chapter 2.2 --- Methods --- p.44 / Chapter 2.2.1 --- Measurement of osmolarity --- p.44 / Chapter 2.2.2 --- Plant growth and treatment conditions --- p.45 / Chapter 2.2.2.1 --- NaCl, PEG and ABA treatment on soybean plant --- p.45 / Chapter 2.2.3 --- Artificial crossing of A. thaliana --- p.46 / Chapter 2.2.3.1 --- Screening of double homozygous transgenic A. thaliana lines --- p.46 / Chapter 2.2.4 --- Transformation of tobacco BY-2 cells --- p.47 / Chapter 2.3 --- Molecular techniques --- p.48 / Chapter 2.3.1 --- DNA extraction --- p.48 / Chapter 2.3.2 --- PCR --- p.48 / Chapter 2.3.2.1 --- Screening of transgenes --- p.48 / Chapter 2.3.2.2 --- Synthesis of DIG-labeled DNA probe for northern blot analysis --- p.49 / Chapter 2.3.3 --- DNA gel electrophoresis --- p.49 / Chapter 2.3.4 --- RNA extraction --- p.50 / Chapter 2.3.5 --- Northern blot analysis --- p.51 / Chapter 2.3.5.1 --- RNA treatment --- p.51 / Chapter 2.3.5.2 --- Electrophoresis --- p.51 / Chapter 2.3.5.3 --- RNA blotting --- p.51 / Chapter 2.3.5.4 --- GmSAL1 mRNA detection --- p.52 / Chapter 2.4 --- Cell viability assay --- p.52 / Chapter 2.5 --- Na⁺ compartmentalization assay --- p.53 / Chapter 2.6 --- ABA sensitivity assays --- p.53 / Chapter 2.6.1 --- Seed germination assay --- p.53 / Chapter 2.6.2 --- Stomatal opening assay --- p.54 / Chapter Chapter 3 --- Results --- p.55 / Chapter 3.1 --- Differential response of GmSAL1 expression level to NaCl and PEG treatment --- p.55 / Chapter 3.2 --- The expression of GmSAL1 in host plant is responsive to ABA --- p.59 / Chapter 3.3 --- Effect of GmSAL1 on cytosolic IP₃ level in vivo --- p.62 / Chapter 3.4 --- Overexpression of GmSAL1 down-regulates in planta IP₃ level in guard cell --- p.62 / Chapter 3.5 --- Ectopic expression of GmSAL1 in A. thaliana alters stomatal aperture in the presence of ABA in a Ca²⁺ dependent manner --- p.67 / Chapter 3.6 --- Ectopic expression of GmSAL1 in A. thaliana reduces the ABA inhibitory effect on seed germination --- p.71 / Chapter 3.7 --- Overexpression of GmSAL1 transiently protects A. thaliana against ionic effect under salinity --- p.76 / Chapter 3.8 --- Overexpression of GmSAL1 enhances the survival of tobacco BY-2 cells under salt treatment but not near iso-osmotic PEG treatment --- p.80 / Chapter 3.9 --- Overexpression of GmSAL1 confers enhanced vacuolar compartmentalization of Na⁺ in NaCl treated BY-2 cells --- p.85 / Chapter Chapter 4 --- Discussion --- p.90 / Chapter 4.1 --- GmSAL1 as a novel inositol 5-phosphatase --- p.90 / Chapter 4.2 --- The effect of GmSAL1 expression on ABA signaling --- p.91 / Chapter 4.3 --- Involvement of GmSAL1 in tolerance toward ionic effect under salt stress --- p.92 / Chapter 4.4 --- The protective function of GmSAL1 under salinity --- p.93 / Chapter Chapter 5 --- Conclusion --- p.96 / References --- p.97 / Chapter Appendix I --- Chemicals --- p.105 / Chapter Appendix II --- Formulations of buffer, medium and solution --- p.107 / Chapter Appendix III --- Equipments and facilities --- p.110 / Chapter Appendix IV --- Osmolarity of solutions --- p.111 / Chapter Appendix V --- Result of biological repeat of northern blot analysis of GmSAL1 in soybean leaf under NaCl --- p.113 / Chapter Appendix VI --- Result of biological repeat of northern blot analysis of GmSAL1 in soybean root under NaCl --- p.114 / Chapter Appendix VII --- Result of biological repeat of northern blot analysis of GmSAL1 in soybean leaves under 100μM ABA treatment for 0hr, 0.5hr, 1hr, 2hr and 4hr --- p.115 / Chapter Appendix VIII --- Result of biological repeat experiment on the survival rate of tobacco BY-2 cell in 150mM NaCl supplemented MS medium --- p.116 / Chapter Appendix IX --- Result of biological repeat experiment on the survival rate of tobacco BY-2 cell in 13.3% PEG-6000 supplemented MS medium --- p.117
850

Study of nonlinear optical properties of fullerenes and related compounds by optical Kerr effect: 應用光學克爾效應硏究足球烯分子及有關化合物之非線性光學性質. / 應用光學克爾效應硏究足球烯分子及有關化合物之非線性光學性質 / Study of nonlinear optical properties of fullerenes and related compounds by optical Kerr effect: Ying yong guang xue ke er xiao ying yan jiu zu qiu xi fen zi ji you guan hua he wu zhi fei xian xing guang xue xing zhi. / Ying yong guang xue ke er xiao ying yan jiu zu qiu xi fen zi ji you guan hua he wu zhi fei xian xing guang xue xing zhi

January 1997 (has links)
Yung, Man Fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references. / Yung, Man Fai. / Acknowledgements --- p.iii / Abstract --- p.iv / Preface --- p.vi / Contents --- p.vii / List of Figures --- p.x / List of Tables --- p.xii / Chapter Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Physical Origin of Optical Nonlinearity --- p.3 / Chapter 1.1.1 --- Mathematical Description --- p.3 / Chapter 1.1.2 --- Anharmonic Oscillator Model --- p.4 / Chapter 1.2 --- Nonlinear Optical Susceptibility --- p.4 / Chapter 1.2.1 --- Molecular Hyperpolarizability --- p.4 / Chapter 1.2.2 --- Macroscopic Nonlinear Susceptibility --- p.5 / Chapter 1.2.3 --- Kleinman Conjecture --- p.6 / Chapter 1.3 --- Third-Order Nonlinear Optical Process --- p.7 / Chapter 1.3.1 --- Intensity Dependent Refractive Index --- p.7 / Chapter 1.3.2 --- Physical Mechanisms --- p.8 / Chapter 1.3.3 --- Tensor Nature of Third-Order Susceptibility x(3) --- p.10 / Chapter 1.3.4 --- Conventions for Nonlinear Susceptibility --- p.11 / References --- p.12 / Chapter Chapter 2. --- Optical Kerr Effect --- p.13 / Chapter 2.1 --- Introduction --- p.13 / Chapter 2.2 --- Theoretical Background --- p.14 / Chapter 2.2.1 --- Pump-Probe Technique --- p.14 / Chapter 2.2.2 --- Description of Induced Birefringence --- p.15 / Chapter 2.2.3 --- Signal Transmitted through OKE --- p.17 / Chapter 2.2.4 --- Resonant OKE --- p.18 / Chapter 2.2.5 --- Third-Order Autocorrelation --- p.19 / Chapter 2.3 --- Applications --- p.20 / References --- p.21 / Tables --- p.23 / Figure Captions --- p.24 / Chapter Chapter 3. --- Nonlinear Optical Properties of Fullerenes --- p.26 / Chapter 3.1 --- Introduction --- p.26 / Chapter 3.2 --- Second Harmonic Generation --- p.27 / Chapter 3.3 --- Third-Order Effects --- p.28 / Chapter 3.4 --- Reverse Saturable Absorption and Optical Limiting --- p.29 / References --- p.32 / Figure Captions --- p.34 / Chapter Chapter 4. --- Excited State Enhancement --- p.38 / Chapter 4.1 --- Introduction --- p.38 / Chapter 4.2 --- Origin and Properties of Excited State Enhancement --- p.39 / Chapter 4.3 --- Experimental Demonstrations --- p.42 / References --- p.44 / Chapter Chapter 5. --- Experimental Setup --- p.46 / Chapter 5.1 --- Introduction --- p.46 / Chapter 5.2 --- Laser System --- p.46 / Chapter 5.3 --- Optical Layout --- p.48 / Chapter 5.4 --- Sample Preparation --- p.50 / Chapter 5.5 --- Detection System --- p.51 / Chapter 5.6 --- Third-Order Autocorrelation Measurement --- p.52 / Chapter 5.7 --- Optical Limiting Measurement --- p.53 / Chapter 5.8 --- Excited State Enhancement Measurement --- p.54 / References --- p.56 / Figure Captions --- p.57 / Chapter Chapter 6. --- Results and Discussion --- p.69 / Chapter 6.1 --- Introduction --- p.69 / Chapter 6.2 --- Results of Pure Liquids --- p.69 / Chapter 6.2.1 --- Carbon Disulfide (CS2) --- p.69 / Chapter 6.2.2 --- Toluene --- p.71 / Chapter 6.2.3 --- Nitrobenzene --- p.71 / Chapter 6.3 --- Third-Order Autocorrelation of CS2 --- p.74 / Chapter 6.4 --- Results of Fullerenes C60 and C70 --- p.75 / Chapter 6.5 --- Optical Limiting of C60 --- p.78 / Chapter 6.6 --- Excited State Enhancement of Fullerenes --- p.79 / References --- p.82 / Tables --- p.85 / Figure Captions --- p.90 / Chapter Chapter 7. --- Conclusion --- p.108

Page generated in 0.0619 seconds