• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Squelettes algorithmiques pour la programmation et l'exécution efficaces de codes parallèles / Algorithmic skeletons for efficient programming and execution of parallel codes

Legaux, Joeffrey 13 December 2013 (has links)
Les architectures parallèles sont désormais présentes dans tous les matériels informatiques, mais les programmeurs ne sont généralement pas formés à leur programmation dans les modèles explicites tels que MPI ou les Pthreads. Il y a un besoin important de modèles plus abstraits tels que les squelettes algorithmiques qui sont une approche structurée. Ceux-ci peuvent être vus comme des fonctions d’ordre supérieur synthétisant le comportement d’algorithmes parallèles récurrents que le développeur peut ensuite combiner pour créer ses programmes. Les développeurs souhaitent obtenir de meilleures performances grâce aux programmes parallèles, mais le temps de développement est également un facteur très important. Les approches par squelettes algorithmiques fournissent des résultats intéressants dans ces deux aspects. La bibliothèque Orléans Skeleton Library ou OSL fournit un ensemble de squelettes algorithmiques de parallélisme de données quasi-synchrones dans le langage C++ et utilise des techniques de programmation avancées pour atteindre une bonne efficacité. Nous avons amélioré OSL afin de lui apporter de meilleures performances et une plus grande expressivité. Nous avons voulu analyser le rapport entre les performances des programmes et l’effort de programmation nécessaire sur OSL et d’autres modèles de programmation parallèle. La comparaison rigoureuse entre des programmes parallèles dans OSL et leurs équivalents de bas niveau montre une bien meilleure productivité pour les modèles de haut niveau qui offrent une grande facilité d’utilisation tout en produisant des performances acceptables. / Parallel architectures have now reached every computing device, but software developers generally lackthe skills to program them through explicit models such as MPI or the Pthreads. There is a need for moreabstract models such as the algorithmic skeletons which are a structured approach. They can be viewed ashigher order functions that represent the behaviour of common parallel algorithms, and those are combinedby the programmer to generate parallel programs. Programmers want to obtain better performances through the usage of parallelism, but the development time implied is also an important factor. Algorithmic skeletons provide interesting results in both those fields. The Orléans Skeleton Library or OSL provides a set of algorithmic skeletons for data parallelism within the bulk synchronous parallel model for the C++ language. It uses advanced metaprogramming techniques to obtain good performances. We improved OSL in order to obtain better performances from its generated programs, and extended its expressivity. We wanted to analyze the ratio between the performance of programs and the development effort needed within OSL and other parallel programming models. The comparison between parallel programs written within OSL and their equivalents in low level parallel models shows a better productivity for high level models : they are easy to use for the programmers while providing decent performances.
2

Squelettes algorithmiques pour la programmation et l'exécution efficaces de codes parallèles

Legaux, Joeffrey 13 December 2013 (has links) (PDF)
Les architectures parallèles sont désormais présentes dans tous les matériels informatiques, mais les pro- grammeurs ne sont généralement pas formés à leur programmation dans les modèles explicites tels que MPI ou les Pthreads. Il y a un besoin important de modèles plus abstraits tels que les squelettes algorithmiques qui sont une approche structurée. Ceux-ci peuvent être vus comme des fonctions d'ordre supérieur synthétisant le comportement d'algorithmes parallèles récurrents que le développeur peut ensuite combiner pour créer ses programmes. Les développeurs souhaitent obtenir de meilleures performances grâce aux programmes parallèles, mais le temps de développement est également un facteur très important. Les approches par squelettes algorithmiques fournissent des résultats intéressants dans ces deux aspects. La bibliothèque Orléans Skeleton Library ou OSL fournit un ensemble de squelettes algorithmiques de parallélisme de données quasi-synchrones dans le langage C++ et utilise des techniques de programmation avancées pour atteindre une bonne efficacité. Nous avons amélioré OSL afin de lui apporter de meilleures performances et une plus grande expressivité. Nous avons voulu analyser le rapport entre les performances des programmes et l'effort de programmation nécessaire sur OSL et d'autres modèles de programmation parallèle. La comparaison rigoureuse entre des programmes parallèles dans OSL et leurs équivalents de bas niveau montre une bien meilleure productivité pour les modèles de haut niveau qui offrent une grande facilité d'utilisation tout en produisant des performances acceptables.
3

Modélisation et implémentation de parallélisme implicite pour les simulations scientifiques basées sur des maillages / Model and implementation of implicit parallélism for mesh-based scientific simulations

Coullon, Hélène 29 September 2014 (has links)
Le calcul scientifique parallèle est un domaine en plein essor qui permet à la fois d’augmenter la vitesse des longs traitements, de traiter des problèmes de taille plus importante ou encore des problèmes plus précis. Ce domaine permet donc d’aller plus loin dans les calculs scientifiques, d’obtenir des résultats plus pertinents, car plus précis, ou d’étudier des problèmes plus volumineux qu’auparavant. Dans le monde plus particulier de la simulation numérique scientifique, la résolution d’équations aux dérivées partielles (EDP) est un calcul particulièrement demandeur de ressources parallèles. Si les ressources matérielles permettant le calcul parallèle sont de plus en plus présentes et disponibles pour les scientifiques, à l’inverse leur utilisation et la programmation parallèle se démocratisent difficilement. Pour cette raison, des modèles de programmation parallèle, des outils de développement et même des langages de programmation parallèle ont vu le jour et visent à simplifier l’utilisation de ces machines. Il est toutefois difficile, dans ce domaine dit du “parallélisme implicite”, de trouver le niveau d’abstraction idéal pour les scientifiques, tout en réduisant l’effort de programmation. Ce travail de thèse propose tout d’abord un modèle permettant de mettre en oeuvre des solutions de parallélisme implicite pour les simulations numériques et la résolution d’EDP. Ce modèle est appelé “Structured Implicit Parallelism for scientific SIMulations” (SIPSim), et propose une vision au croisement de plusieurs types d’abstraction, en tentant de conserver les avantages de chaque vision. Une première implémentation de ce modèle, sous la forme d’une librairie C++ appelée SkelGIS, est proposée pour les maillages cartésiens à deux dimensions. Par la suite, SkelGIS, et donc l’implémentation du modèle, est étendue à des simulations numériques sur les réseaux (permettant l’application de simulations représentant plusieurs phénomènes physiques). Les performances de ces deux implémentations sont évaluées et analysées sur des cas d’application réels et complexes et démontrent qu’il est possible d’obtenir de bonnes performances en implémentant le modèle SIPSim. / Parallel scientific computations is an expanding domain of computer science which increases the speed of calculations and offers a way to deal with heavier or more accurate calculations. Thus, the interest of scientific computations increases, with more precised results and bigger physical domains to study. In the particular case of scientific numerical simulations, solving partial differential equations (PDEs) is an especially heavy calculation and a perfect applicant to parallel computations. On one hand, it is more and more easy to get an access to very powerfull parallel machines and clusters, but on the other hand parallel programming is hard to democratize, and most scientists are not able to use these machines. As a result, high level programming models, framework, libraries, languages etc. have been proposed to hide technical details of parallel programming. However, in this “implicit parallelism” field, it is difficult to find the good abstraction level while keeping a low programming effort. This thesis proposes a model to write implicit parallelism solutions for numerical simulations such as mesh-based PDEs computations. This model is called “Structured Implicit Parallelism for scientific SIMulations” (SIPSim), and proposes an approach at the crossroads of existing solutions, taking advantage of each one. A first implementation of this model is proposed, as a C++ library called SkelGIS, for two dimensional Cartesian meshes. A second implementation of the model, and an extension of SkelGIS, proposes an implicit parallelism solution for network-simulations (which deals with simulations with multiple physical phenomenons), and is studied in details. A performance analysis of both these implementations is given on real case simulations, and it demonstrates that the SIPSim model can be implemented efficiently.

Page generated in 0.1415 seconds