• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • 1
  • 1
  • Tagged with
  • 26
  • 13
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Seismic imaging and velocity model building with the linearized eikonal equation and upwind finite-differences

Li, Siwei, 1987- 03 July 2014 (has links)
Ray theory plays an important role in seismic imaging and velocity model building. Although rays are the high-frequency asymptotic solutions of the wave equation and therefore do not usually capture all details of the wave physics, they provide a convenient and effective tool for a wide range of geophysical applications. Especially, ray theory gives rise to traveltimes. Even though wave-based methods for imaging and model building had attracted significant attentions in recent years, traveltime-based methods are still indispensable and should be further developed for improved accuracy and efficiency. Moreover, there are possibilities for new ray theoretical methods that might address the difficulties faced by conventional traveltime-based approaches. My thesis consists of mainly four parts. In the first part, starting from the linearized eikonal equation, I derive and implement a set of linear operators by upwind finite differences. These operators are not only consistent with fast-marching eikonal solver that I use for traveltime computation but also computationally efficient. They are fundamental elements in the numerical implementations of my other works. Next, I investigate feasibility of using the double-square-root eikonal equation for near surface first-break traveltime tomography. Compared with traditional eikonal-based approach, where the gradient in its adjoint-state tomography neglects information along the shot dimension, my method handles all shots together. I show that the double-square-root eikonal equation can be solved efficiently by a causal discretization scheme. The associated adjoint-state tomography is then realized by linearization and upwind finite-differences. My implementation does not need adjoint state as an intermediate parameter for the gradient and therefore the overall cost for one linearization update is relatively inexpensive. Numerical examples demonstrate stable and fast convergence of the proposed method. Then, I develop a strategy for compressing traveltime tables in Kirchhoff depth migration. The method is based on differentiating the eikonal equation in the source position, which can be easily implemented along with the fast-marching method. The resulting eikonal-based traveltime source-derivative relies on solving a version of the linearized eikonal equation, which is carried out by the upwind finite-differences operator. The source-derivative enables an accurate Hermite interpolation. I also show how the method can be straightforwardly integrated in anti-aliasing and Kirchhoff redatuming. Finally, I revisit the classical problem of time-to-depth conversion. In the presence of lateral velocity variations, the conversion requires recovering geometrical spreading of the image rays. I recast the governing ill-posed problem in an optimization framework and solve it iteratively. Several upwind finite-differences linear operators are combined to implement the algorithm. The major advantage of my optimization-based time-to-depth conversion is its numerical stability. Synthetic and field data examples demonstrate practical applicability of the new approach. / text
12

Non-eikonal corrections to nuclear few-body scattering models

Brooke, J. M. January 1999 (has links)
No description available.
13

Relativistic eikonal formalism applied to inclusive quasielastic proton-induced nuclear reactions

Titus, Nortin, P-D 12 1900 (has links)
Thesis (PhD (Physics))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: In this dissertation we present, for the first time, a relativistic distorted wave impulse approximation formalism to describe quasielastic proton-nucleus scattering. We start from a full many-body description of the transition matrix element and show systematically how to derive the equivalent two-body form. This procedure allows for a clear and unambiguous method to introduce relativistic distorted waves. It is shown that the polarized double differential cross section may be written as the contraction of two tensors namely, the hadronic tensor (describing the projectile and ejectile), and the polarization tensor describing the target nucleus. The basic nucleon-nucleon (NN) interaction is described by the SPVAT or IA1 representation of the NN scattering matrix. Analytical expressions are derived for the polarization tensor using a Fermi gas model for the target nucleus. The nuclear distortion effects on the projectile and ejectile are described using the relativistic eikonal formalism. The expression for the double differential cross section is a nine dimensional oscillatory integral and an efficient procedure is developed to calculate this quantity. Comparison of Gaussian, Monte Carlo and quasi-Monte Carlo numerical integration schemes reveal that for this work, Gaussian quadrature is best suited for this problem. Traditional Gaussian quadrature is used to generate single variable functions whereby these functions are used in combination with modern software such as MATLAB to complete the computation of the full multidimensional integral in a reasonable amount of time. Even though the calculation of the cross section for a single value of the energy transfer is still time consuming, the computational time can be decreased by spreading the calculational burden across a number of nodes in a cluster computing system. A test calculation is performed whereby a proton with incident laboratory energy of 400 MeV is scattered off a 40Ca target nucleus at θcm = 40◦. For this reaction we calculate the unpolarized double differential cross section, as well as a complete set of spin observables namely Ay, Dℓ′,ℓ, Ds′s, Dnn,Ds′ℓ and Dℓ′s. We find that the distortions lead to a reduction of the unpolarized double differential cross section. On the other hand the spin observables are complex entities which show no uniformity in behaviour. However, the differences between the distorted wave spin observables and that of the plane wave observables are minor and we conclude that distortions have little effect on spin observables. / AFRIKAANSE OPSOMMING: Hierdie proefskrif bevat, vir die eerste keer, ’n relatiwistiese vervormdegolf impuls benadering formalisme vir die beskrywing van kwasielastiese proton-kern verstrooiing. Daar word aangetoon hoe om stapsgewys te gaan vanaf ’n veel-deeltjie beskrywing van die oorgangsmatriks element na die ekwivalente twee-deeltjie vorm. Hierdie metode laat toe dat die vervormde golwe op ’n duidelike en ondubbelsinnige manier ingevoer kan word. Daar word aangetoon dat die gepolariseerde dubbele differensiële kansvlak geskryf kan word as die kontraksie van twee tensore naamlik, die hadroniese tensor (wat die projektiel en uitgaande nukleon beskryf), sowel as die polarisasie tensor wat die kern beskryf. Die basiese kern-kern (NN) wisselwerking word beskryf deur gebruik te maak van die SPVAT of IA1 daarstelling van die NN verstrooiingsmatriks. Analitiese uitdrukkings word ook afgelei vir die polarisasie tensor binne die Fermi gas model. Die vervormdegolf beskrywing van die projektiel en uitgaande deeltjie word gedoen deur gebruik te maak van die eikonal vervormdegolf benadering. Die uitdrukking vir die ongepolariseerde dubbele differsieële kansvlak bevat ’n nege dimensioneële ossilatoriese integraal en ’n prakties-effektiewe prosedure is ontwikkel om hierdie waarneembare te bereken. Vegelyking van Gauss, Monte Carlo en kwasi-Monte Carlo numeriese integrasie tegnieke het uitgewys dat die Gauss integrasie tegniek die beste geskik is om die probleem op te los. Die gebruik van Gauss integrasie om funksies te bereken wat afhanklik is van net een veranderlike en dit te kombineer met moderne sagteware programme soos MATLAB laat ons toe om die gepolariseerde dubbele differensieële kansvlak te bekeren in ’n redelike tyd. Alhoewel die berekening van die kansvlak vir een waarde van die energie-oordrag nogsteeds tydrowend is, word dit bespoedig deur die berekeningslas te versprei oor ’n aantal nodusse in ’n rekenaarbondel sisteem. ’n Toets berekening word gedoen waarby ’n proton met inkomende laboratoriese energie van 400 MeV vanaf ’n 40Ca kern verstrooi word teen ’n hoek van θcm = 400. Vir hierdie reaksie word die ongepolariseerde dubbele differensieële kansvlak bereken sowel as ’n volledige stel spin waarneembares naamlik Ay, Dℓ′,ℓ, Ds′s, Dnn, Ds′ℓ en Dℓ′s. Daar word gevind dat die versteurings lei tot ’n afname in die differensieële kansvlak. Die spin waarneembares egter, is komplekse hoeveelhede wat geen univorme gedrag toon nie. Die verskil tussen die vervormde golf spin waarneembares en die van vlak golf waarneembares is minimaal en ons lei daarvan af dat spin waarneembares onsensitief is teen oor versteurings.
14

Ionization in ion-atom collisions

McSherry, D. M. January 2001 (has links)
No description available.
15

Modelamento sismico assintotico utilizando diferenças finitas / Asymptotic seismic modeling using finite-differences

Pila, Matheus Fabiano, 1979- 03 November 2005 (has links)
Orientadores: Lucio Tunes dos Santos, Maria Amélia Novais Schleicher / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T04:00:54Z (GMT). No. of bitstreams: 1 Pila_MatheusFabiano_M.pdf: 955722 bytes, checksum: adb4b488d6a2e8995d1f8985186d2693 (MD5) Previous issue date: 2005 / Mestrado / Geofisica Computacional / Mestre em Matemática Aplicada
16

Nouveaux algorithmes efficaces de modélisation 2D et 3D : Temps des premières arrivées, angles à la source et amplitudes / New efficient 2D and 3D modeling algorithms to compute travel times, take-off angles and amplitudes

Belayouni, Nidhal 25 April 2013 (has links)
Les temps de trajet, amplitudes et angles à la source des ondes sismiques sont utilisés dans de nombreuses applications telles que la migration, la tomographie, l'estimation de la sensibilité de détection et la localisation des microséismes. Dans le contexte de la microsismicité, il est nécessaire de calculer en quasi temps réel ces attributs avec précision. Nous avons développé ici un ensemble d'algorithmes rapides et précis en 3D pour des modèles à fort contraste de vitesse.Nous présentons une nouvelle méthode pour calculer les temps de trajet, les amplitudes et les angles à la source des ondes correspondant aux premières arrivées. Plus précisément, nous résolvons l'équation Eikonal, l'équation de transport et l'équation des angles en nous basant sur une approche par différences finies pour des modèles de vitesse en 3D. Nous proposons une nouvelle méthode hybride qui bénéficie des avantages respectifs de plusieurs approches existantes de résolution de l'équation Eikonal. En particulier, les approches classiques proposent généralement de résoudre directement les équations et font l'approximation localement d'une onde plane. Cette approximation n'est pas bien adaptée au voisinage de la source car la courbure du front d'onde est importante. Des erreurs de temps de trajet sont alors générées près de la position de la source, puis propagées à travers tout le modèle de vitesse. Ceci empêche de calculer correctement les amplitudes et les angles à la source puisqu'ils reposent sur les gradients des temps. Nous surmontons cette difficulté en introduisant les opérateurs sphériques ; plus précisément nous reformulons les temps de trajet, amplitudes et angles à la source par la méthode des perturbations.Nous validons nos nouvelles méthodes pour différents modèles à fort contraste de vitesse en 2D et 3D et montrons notre contribution par rapport aux approches existantes. Nos résultats sont similaires à ceux calculés en utilisant la modélisation de la forme d'onde totale alors qu'ils sont bien moins coûteux en temps de calcul. Ces résultats ouvrent donc de nouvelles perspectives pour de nombreuses applications telles que la migration, l'estimation de la sensibilité de détection et l'inversion des mécanismes au foyer. / Traveltimes, amplitudes and take-off angles of seismic waves are used in many applications such as migration, tomography, detection sensitivity estimation and microseism location. In the microseismicty context it is necessary to compute in near real time accurately these attributes. Here we developed a set of fast and accurate algorithms in 3D for highly contrasted velocity models.We present a new accurate method for computing first arrival traveltimes, amplitudes and take-off angles; more precisely we solve the Eikonal, transport and take-off angle equations based on a finite difference approach for 3D velocity models. We propose a new hybrid method that benefits from the advantages of several existing Eikonal solvers. Common approaches that solve directly these equations assume that we are locally propagating a plane wave. This approximation is not well adapted in the neighborhood of the source since the wavefront curvature is important. Travel times errors are generated near the source position and then propagated through the whole velocity model. This prevents from properly calculating the amplitudes and the take-off angles since they rely on the travel time gradients that are not accurate. We overcome this difficulty by introducing spherical operators. Indeed we reformulate the traveltimes, amplitudes and take-off angles with the perturbation method.We validate our new methods on various highly contrasted velocity models in 2D and 3D and show our contribution compared to other existing approaches. Our results are similar to those computed using full waveform modeling while they are obtained in a much shorter CPU time. These results open thus new perspectives for several applications such as migration, detection sensitivity estimation and focal mechanism inversion.
17

Dijkstrův algoritmus v problému proudění chodců / On the Dijkstra's algorithm in the pedestrian flow problem

Petrášová, Tereza January 2018 (has links)
Title: On the Dijkstra's algorithm in the Pedestrian Flow Problem Author: Tereza Petrášová Department: Department of Numerical Mathematics Supervisor: doc. RNDr. Jiří Felcman, CSc., Department of Numerical Mathe- matics Abstract: The pedestrian flow problem is described by a coupled system of the first order hyperbolic partial differential equations with the source term and by the functional minimization problem for the desired direction of motion. The functional minimization is based on the modified Dijkstra's algorithm used to find the minimal path to the exit. The original modification of the Dijkstra's algorithm is proposed to increase its efficiency in the pedestrian flow problem. This approach is compared with the algorithm of Bornemann and Rasch for determination of the desired direction of motion based on the solution of the so- called Eikonal equation. Both approaches are numerically tested in the framework of two splitting algorithms for solution of the coupled problem. The former splitting algorithm is based on the finite volume method yielding for the given time instant the piecewise constant approximation of the solution. The latter one uses the implicit discretization by a space-time discontinuous Galerkin method based on the discontinuous piecewise polynomial approximation. The numerical examples...
18

Study of the eikonal approximation to model exotic reactions

Hebborn, Chloë 08 September 2020 (has links) (PDF)
In the mid-eighties, the development of radioactive-ion beams enabled the exploration ofregions of the nuclear landscape away from the valley of stability. Close to the neutrondripline, in the light neutron-rich region, halo nuclei were observed. These nuclei exhibit asurprisingly large matter radius and a strongly clusterized structure. These two featurescan be explained by the weak binding of one or two neutrons which allows them to tunnelfar from the rest of the nucleons, surrounding the nucleus by a diffuse halo. These nuclearstructures have challenged the usual description of the nucleus, described as a compactmany-body object with nucleons piling up into well defined orbitals. Because they areshort-lived, these nuclei are often studied through reaction processes, such as elasticscattering, breakup and knockout. To infer precise information from the experimentaldata, an accurate reaction model coupled with a realistic description of the nucleus isneeded.Compared to other state-of-the-art methods, the eikonal approximation is very cheapfrom a computational viewpoint. This model assumes that the projectile-target relativemotion does not differ much from the initial plane wave. It also makes the adiabaticapproximation, which sees the internal coordinates of the projectile as frozen during thecollision. These two assumptions hold for reactions occurring at high energy, i.e. above60 MeV/nucleon, in which the deflection of the projectile by the target is small and thecollision time is brief.In this thesis, I focus on improvements of the eikonal approximation. First, I studythe extension of the validity of the eikonal model down to 10 MeV/nucleon, in the energyrange of the facilities HIE-ISOLDE at CERN and ReA12 at the upcoming FRIB. To thisend, I analyse different corrections to the eikonal approximation, which account for thedeflection of the projectile by the target. I assess their accuracy for the elastic-scatteringand breakup observables of one-neutron halo nuclei at 10 MeV/nucleon. Next, I developa dynamical correction to the eikonal approximation, which applies to both nuclear andCoulomb interactions while conserving the eikonal numerical cost. I study this correctionin the cases of breakup reactions of one-neutron halo nuclei on light and heavy targets.Then, I investigate which nuclear-structure information can be inferred from knockoutreactions of one-neutron halo nuclei. To do so, I conduct a sensitivity analysis of theirobservables to the nuclear structure of the projectile, described within a halo effectivefield theory. In particular, I study the influence onto the cross sections of the ground-statewave function, the presence of subthreshold bound states and resonances. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
19

Nouveaux algorithmes efficaces de modélisation 2D et 3D : Temps des premières arrivées, angles à la source et amplitudes

Belayouni, Nidhal 25 April 2013 (has links) (PDF)
Les temps de trajet, amplitudes et angles à la source des ondes sismiques sont utilisés dans de nombreuses applications telles que la migration, la tomographie, l'estimation de la sensibilité de détection et la localisation des microséismes. Dans le contexte de la microsismicité, il est nécessaire de calculer en quasi temps réel ces attributs avec précision. Nous avons développé ici un ensemble d'algorithmes rapides et précis en 3D pour des modèles à fort contraste de vitesse.Nous présentons une nouvelle méthode pour calculer les temps de trajet, les amplitudes et les angles à la source des ondes correspondant aux premières arrivées. Plus précisément, nous résolvons l'équation Eikonal, l'équation de transport et l'équation des angles en nous basant sur une approche par différences finies pour des modèles de vitesse en 3D. Nous proposons une nouvelle méthode hybride qui bénéficie des avantages respectifs de plusieurs approches existantes de résolution de l'équation Eikonal. En particulier, les approches classiques proposent généralement de résoudre directement les équations et font l'approximation localement d'une onde plane. Cette approximation n'est pas bien adaptée au voisinage de la source car la courbure du front d'onde est importante. Des erreurs de temps de trajet sont alors générées près de la position de la source, puis propagées à travers tout le modèle de vitesse. Ceci empêche de calculer correctement les amplitudes et les angles à la source puisqu'ils reposent sur les gradients des temps. Nous surmontons cette difficulté en introduisant les opérateurs sphériques ; plus précisément nous reformulons les temps de trajet, amplitudes et angles à la source par la méthode des perturbations.Nous validons nos nouvelles méthodes pour différents modèles à fort contraste de vitesse en 2D et 3D et montrons notre contribution par rapport aux approches existantes. Nos résultats sont similaires à ceux calculés en utilisant la modélisation de la forme d'onde totale alors qu'ils sont bien moins coûteux en temps de calcul. Ces résultats ouvrent donc de nouvelles perspectives pour de nombreuses applications telles que la migration, l'estimation de la sensibilité de détection et l'inversion des mécanismes au foyer.
20

Beyond the adiabatic model for the elastic scattering of composite nuclei

Summers, Neil Christopher January 2001 (has links)
No description available.

Page generated in 0.0379 seconds