Spelling suggestions: "subject:"einzelnen molekülkontakte"" "subject:"einzelnen cnt_metallkontakte""
1 |
Leitwertkontrolle einzelner elektrisch kontaktierter MoleküleSendler, Torsten 20 October 2015 (has links) (PDF)
Die molekulare Elektronik setzt sich zum Ziel, passive und aktive Bausteine in integrierten Schaltkreisen auf molekularer Ebene zu realisieren. Dabei ist entscheidend, dass sich der elektrische Leitwert der molekularen Bauelemente hinreichend regulieren lässt. Um zu belegen, dass dies möglich ist, wird in dieser Dissertation die gezielte Leitwertkontrolle einzelner über Nanoelektroden kontaktierter Moleküle nachgewiesen. Die erzielten Ergebnisse ergänzen dabei nahtlos aktuellste Studien.
Zum einen werden kontaktierte molekulare Schalter durch Bestrahlung mit Licht einer bestimmten Wellenlänge in-situ von einem nicht-leitenden in einen leitenden Zustand geschaltet, wobei der Einfluss unterschiedlicher Seitengruppen für eine zusätzliche Modifikation des Leitwerts sorgt. Ausschlaggebend ist hierbei die elektronische Anbindung des Moleküls an die Elektroden. Zum anderen werden Molekül-Metall-Komplexe durch die Einbindung eines Übergangsmetallions von einem isolierenden in einen leitenden Zustand versetzt. In diesem Fall lässt sich der leitende Zustand durch die Wahl des Ions innerhalb einer Größenordnung variieren, was eine völlig neue Möglichkeit der Leitwertkontrolle in molekularen Bausteinen darstellt. Das Ion bestimmt dabei sowohl die mechanische Stabilität als auch die elektronische Struktur des Moleküls.
Für die Kontaktierung einzelner Moleküle kommt die Technik des mechanisch kontrollierten Bruchkontakts zum Einsatz. So lassen sich feine Goldnanoelektroden herstellen, an die Moleküle anbinden. Um eine präzise Analyse durchzuführen, werden über zwei unabhängige Messstrategien Informationen über das elektrische Transportverhalten sowie über die elektronische Struktur der Moleküle erworben.
In dieser Arbeit sind echte Neuentwicklungen auf dem Gebiet der molekularen Elektronik gelungen, die einen wesentlichen Beitrag für die Umsetzung integrierter molekularer Schaltkreise leisten.
|
2 |
Leitwertkontrolle einzelner elektrisch kontaktierter MoleküleSendler, Torsten 02 October 2015 (has links)
Die molekulare Elektronik setzt sich zum Ziel, passive und aktive Bausteine in integrierten Schaltkreisen auf molekularer Ebene zu realisieren. Dabei ist entscheidend, dass sich der elektrische Leitwert der molekularen Bauelemente hinreichend regulieren lässt. Um zu belegen, dass dies möglich ist, wird in dieser Dissertation die gezielte Leitwertkontrolle einzelner über Nanoelektroden kontaktierter Moleküle nachgewiesen. Die erzielten Ergebnisse ergänzen dabei nahtlos aktuellste Studien.
Zum einen werden kontaktierte molekulare Schalter durch Bestrahlung mit Licht einer bestimmten Wellenlänge in-situ von einem nicht-leitenden in einen leitenden Zustand geschaltet, wobei der Einfluss unterschiedlicher Seitengruppen für eine zusätzliche Modifikation des Leitwerts sorgt. Ausschlaggebend ist hierbei die elektronische Anbindung des Moleküls an die Elektroden. Zum anderen werden Molekül-Metall-Komplexe durch die Einbindung eines Übergangsmetallions von einem isolierenden in einen leitenden Zustand versetzt. In diesem Fall lässt sich der leitende Zustand durch die Wahl des Ions innerhalb einer Größenordnung variieren, was eine völlig neue Möglichkeit der Leitwertkontrolle in molekularen Bausteinen darstellt. Das Ion bestimmt dabei sowohl die mechanische Stabilität als auch die elektronische Struktur des Moleküls.
Für die Kontaktierung einzelner Moleküle kommt die Technik des mechanisch kontrollierten Bruchkontakts zum Einsatz. So lassen sich feine Goldnanoelektroden herstellen, an die Moleküle anbinden. Um eine präzise Analyse durchzuführen, werden über zwei unabhängige Messstrategien Informationen über das elektrische Transportverhalten sowie über die elektronische Struktur der Moleküle erworben.
In dieser Arbeit sind echte Neuentwicklungen auf dem Gebiet der molekularen Elektronik gelungen, die einen wesentlichen Beitrag für die Umsetzung integrierter molekularer Schaltkreise leisten.
|
Page generated in 0.0658 seconds