• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude du mode de fonctionnement du complexe récepteur de l'élastine : modulation de la composition et de la dynamique de la membrane plasmique / Study of the elastin complex receptor operating mechanism : modulation of the dynamic and composition of plasma membrane.

Rusciani, Anthony 28 September 2012 (has links)
L'élastine est la protéine matricielle responsable de l'élasticité des tissus retrouvée dans des tissus soumis à de fortes contraintes mécaniques tels que les poumons, les artères ou la peau. La dégradation de cette protéine lors de processus physiopathologiques produit des peptides bologiquement actifs nommés peptides d'élastine portant le motif GXXPG essentiel à leur activité. Ces peptides régulent diverses fonctions biologiques telles que le chimiotactisme, la synthèse de protéases, la prolifération. Tous ces effets dépendent de la fixation des peptides d'élastine au complexe récepteur de l'élastine. Ce complexe est composé de trois sous-unités : une protéine périphérique de 67 kDa, l'Elastin Binding Protein (EBP), et deux protéines associées à la membrane, la Protective Protein/Cathepsin A (PP/CA) et la Neuraminidase-1 (Neu-1) de 55 et 61 kDa respectivement. L'activité sialidase de Neu-1 est responsable de l'activation de ERK 1/2 après fixation des peptides d'élastine au complexe récepteur de l'élastine.Dans cette étude, nous démontrons que l'EBP et les radeaux lipidiques sont colocalisés à la membrane plasmique. Nous montrons, de plus, que la déstructuration de ces microdomaines aussi bien que leur déplétion en glycolipides bloque la signalisation du récepteur. L'utilisation d'un anticorps monoclonal bloquant dirigé contre le GM3 montre qu'il est essentiel à la signalisation. Après traitement par les peptides d'élastine, le contenu cellulaire en GM3 diminue alors que celui en lactosylcéramide augmente suggérant une conversion du GM3 en lactosylcéramide. L'utilisation de lactose ou de siRNA Neu-1 bloque cette conversion ce qui tend à démontrer que le complexe récepteur de l'élastine est impliqué dans ce mécanisme. Une analyse par cytométrie en flux confirme cette production de lactosylcéramide induite par les peptides d'élastine.L'analyse par spectrométrie de masse mettrait en évidence deux lactosylcéramides (C23:0 et C24:1) potentiellement bioactifs dont la synthèse chimique a été entreprise. La purification des radeaux lipidiques par ultracentrifugation différentielle en gradient de saccharose ainsi que leur identification par Dot-blot couplé à la fluorescence montre un changement de densité de ces microdomaines après stimulation par les peptides d'élastine.L'évaluation biologique in vitro de ces lactosylcéramides montre qu'ils miment les effets des peptides d'élastine sur l'activation de ERK 1/2, la prolifération et la synthèse de MMP-1. Enfin, l'évaluation ex vivo des lactosylcéramides démontre une réduction de la zone de tissu cardiaque nécrosé suggérant un rôle cardioprotecteur de ces molécules. Ce travail propose un mécanisme original de transduction du signal à la membrane plasmique et nous laisse envisager le complexe récepteur de l'élastine, les peptides d'élastine et le lactosylcéramide comme de nouveaux agents thérapeutiques potentiels. / Elastin is the matrix protein responsible for the elasticity of tissues where resilience is required such as lung, arteries or skin. Elastin degradation during physiopathological processes produces biologically active peptides named elastin peptides bearing the GXXPG pattern essential for their activity. These peptides regulate various biological functions such as chemotaxis, proteases synthesis and proliferation. These effects are dependent of elastin peptide binding to the elastin receptor complex (ERC). This complex is composed of three subunits: a peripheral protein of 67 kDa called elastin binding protein (EBP) and two membrane-associated proteins, protective protein/cathepsin A (PP/CA) and neuraminidase-1 (Neu-1) of 55 and 61 kDa, respectively. The sialidase activity of Neu-1 is responsible for ERK 1/2 pathway activation following binding of elastin peptide on the elastin receptor complex.In this study, we demonstrate that EBP and lipid rafts colocalize at the plasma membrane. We also show that the disruption of these microdomains and their depletion in glycolipids block the receptor signaling. The use of a monoclonal anti-GM3 blocking antibody shows that this glycosphingolipid is essential for signaling. Following elastin peptide treatment, cellular GM3 level decreases while the lactosylceramide one increases consistently with a GM3/LacCer conversion. The use of lactose or Neu-1 siRNA blocks this process suggesting that the elastin receptor complex is involved in this mechanism. Flow cytometry analysis confirms this elastin peptide-driven LacCer generation.Mass spectrometry analysis of elastin peptide-stimulated cell membrane extracts identified two potentially bioactive lactosylceramides (C23:0 and C24:1) and their synthesis has been realized. Lipid rafts purification by differencial ultracentrifugation in sucrose gradient shows a variation of the microdomains density as well as their identification by fluorescence linked-Dot-blot following elastin peptide stimulation.In vitro biological evaluation of these lactosylceramides shows that they mimic the elastin peptide effects on ERK 1/2 activation, proliferation and MMP-1 synthesis. Finally, ex vivo lactosylceramides evaluation demonstrates a decrease of cardiac tissue necrosis area suggesting that these molecules could be cardioprotective agents. This work proposes an original mechanism of signal transduction at the plasma membrane and let us foresees the elastin receptor complex, elastin peptides and lactosylceramide as new potential therapeutical targets.

Page generated in 0.0521 seconds