• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 5
  • 2
  • Tagged with
  • 39
  • 39
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Performance measurements of rail curve lubricants

Wilson, Lance Jon January 2006 (has links)
Wear of railroad rolling stock and rails costs millions of dollars annually in all rail systems throughout the world. The rail industry has attempted to address flange wear using rail curve lubricants and presently use a variety of lubricants and lubricant applicators. The choice of lubricant and applicator is currently based on considerations that do not address the wear problem directly. This research quantified rail curve lubricant performance through laboratory simulation. The effects of lubricants in the wheel/rail contact were investigated. Rail curve lubricant performance was measured with a laboratory rail/wheel simulator for the purpose of optimising the choice of lubricant. New methods for measurement of rail curve lubricant performance have been presented. These performance measurements are total absorbed energy, the energy absorbed in the lubricant film instead of being utilised for wear processes; total distance slid, the sliding distance or accumulated strain achieved prior to development of a set tractive force limit; half life of lubricant, the time taken for a lubricant to lose half of its sliding performance; and apparent viscosity, a measure of the lubricity presented with respect to accumulated strain. The rail/wheel simulator used in this research consists of two dissimilar wheels (disks) rotating in contact with one another simulating a conformal gauge corner contact. The first wheel, a simulated rail, is driven by an electric motor which then drives the second wheel, a simulated railroad wheel, through the contact. Hydraulic braking on the railroad wheel is used to simulate the rolling/sliding conditions. The variables of the simulated contact that are controlled with this equipment are normal force, input wheel speed, slip ratio between samples, sample geometries and material properties, and lubricant types. Rail curve lubricants were laboratory tested to define their properties using the ASTM and other appropriate standards. The performance differences measured using ASTM standards based tests were susceptible to repeatability problems and did not represent the contact as accurately as the rail/wheel simulator. This laboratory simulator was used to gather data in lubricated and unlubricated conditions for the purpose of providing lubricant performance measurements. These measurements were presented and the tested lubricants were ranked conclusively using three industrially relevant performance criteria. Total sliding distance and total absorbed energy measurements of the rail curve lubricants displayed clear differences in lubricant performance for both of these criteria. Total sliding distance is equivalent to the number of axles in the field situation, while total absorbed energy is the energy unavailable for wear processes of rails and wheels. Lubricants designed using these measurements will increase lubricant performance with respect to these performance criteria which in turn will reduce wear to both rails and wheels. Measurement of the apparent viscosity of rail curve lubricants, using the rail/wheel simulator, displayed changes in rheological characteristics with respect to accumulated strain. Apparent viscosity is a measure of the shear stress transmitted from the wheels to the rails. Designing a rail curve lubricant after analysing measurements taken from the rail/wheel simulator will assist in identifying lubricant properties to reduce the wear producing shear stresses generated in a rail wheel contact. Decay of lubricant performance was measured for three different rail curve lubricants under simulated conditions. The research found appreciable and quantifiable differences between lubricants. Industrial application of the findings will improve positioning of lubrication systems, improve choice of lubricants and predict effective lubrication distance from the lubricant application point. Using the new methods of lubricant performance measurement developed in this thesis, the objective of this research, to quantify rail curve lubricant performance through laboratory simulation, has been achieved.
12

Design and Developement of the testing methodology for the planetary friction drive.

Patial, Rajat Kumar, Singh, Jaspreet January 2020 (has links)
No description available.
13

Simulace mazání bodových kontaktů metodou konečných prvků / Simulation of point contact lubrication by finite element method

Hrdonka, Štěpán January 2018 (has links)
This diploma thesis is concerned with simulation of elastohydrodynamic lubrication of point contacts using the finite element method. The first part of the thesis focuses on the study of the issue and introduces equations for model creation and numerical methods which can be used for EHD calculation. The most suitable solution approach has been chosen from the overview, namely the Full system approach. The software we chose for applying the method was COMSOL Multyphysics. The following part of the thesis deals with model’s creation and gives its elaborate description. We introduce models for calculation of line and point EHD lubrication for newtonian lubricants and, last but not least, we also present a model for calculation of point contact EHD lubrication for non-newtonian lubricants. The next part of the thesis then verifies all the models. That is achieved by comparing the calculated results to results from different papers. The conclusive part of the thesis then examines the matches of acquired results to different prediction relationships and experiments.
14

Lubrication and Wear at Metal/HDPE Contacts

Akchurin, Aydar January 2012 (has links)
In the thesis lubrication and wear at metal/HDPE contacts was addressed. In particular this type of contact occurs in artificial joint replacements. Wear of HDPE was recognized as a major factor limiting device performance. In the thesis, fully implicit fully coupled numerical approach was developed to simulate lubrication and wear. Approach allows solving stationary and transient problems for rough surfaces in a wide range of parameters. Wear coefficients were estimated from experimental data. Wear particles formed in wear process were investigated. Particles were found to be approximately 100 nm in diameter and spherical in shape. Considering theoretical solutions, it was concluded that debris may play a role of third-body abrasive wear particles. In the summary section, some discussion was provided on the topic of theoretical modeling of friction and wear and recommendations for future research were formulated.
15

Studium chování elastohydrodynamicky mazaných kontaktů strojních částí s nehladkými povrchy / Study of behaviour of EHD lubricated contact of machine parts within non-smooth surfaces

Zapletal, Lukáš January 2010 (has links)
Master’s thesis deals with development of software application to calculate contact pressure in eleastohydrodynamic lubricated contact in order to use previously obtained data of the lubricating film thickness. The introduction contains a short overview of methods used for the study of film thickness and contact pressure. Custom work includes a contact pressure solution derived from a film thickness, a description of the developed software and analysis of algorithms used for its compilation. The last part deals with the verification of algorithm, application of software for calculating the contact pressure on the rough surface and analysis of the results. The conclusion includes a summary and possible application of software in practice.
16

Studium utváření mazacích filmů za podmínek nedostatečného zásobování kontaktu mazivem / Study of lubrication films formation under starved lubrication conditions

Košťál, David January 2011 (has links)
The purpose of this thesis is to reveal production mechanisms of lubrication films between non-conformal surfaces in situations, when is not possible to designate lubrication regime as fully flooded elastohydrodynamic contact. Under certain conditions of lubrication volume, rolling speeds, temperatures, lubrication properties or loads could lubrication film decrease under values determined by fully flooded formulas. This regime is designated as starvation at it includes risk of increased wear. In this thesis the methodology and the new simulator of starving contact are described. Obtained film thickness results are compared with existing numerical models.
17

The Influence of a Class of Surface Defects on the High-Speed Scuffing Performance of Spur Gears

Beall, Gunther Shepard January 2021 (has links)
No description available.
18

An Investigation on Spur Gear Rolling Contact Fatigue Crack Initiation and Crack Propagation under EHL Condition

Dharmarajan, Vignesh January 2019 (has links)
No description available.
19

A Generalized Elastohydrodynamic Lubrication Model for Two-Dimensional Contacts

Chimanpure, Amit S. January 2020 (has links)
No description available.
20

An Experimental Evaluation of Micro-pitting Performance of Two Bearing Steels

Tilson, Nial Robert 09 August 2013 (has links)
No description available.

Page generated in 0.0961 seconds