731 |
Load forecast on a Micro Grid level through Machine Learning algorithmsTiago Alexandre Castro Guimarães 12 May 2020 (has links)
As Micro Redes constituem um sector em crescimento da indústria energética, representando uma mudança de paradigma, desde as remotas centrais de geração até à produção mais localizada e distribuída. A capacidade de isolamento das principais redes elétricas e atuar de forma independente tornam as Micro Redes em sistemas resilientes, capazes de conduzir operações flexíveis em paralelo com a prestação de serviços que tornam a rede mais competitiva. Como tal, as Micro Redes fornecem energia limpa eficiente de baixo custo, aprimoram a coordenação dos ativos e melhoram a operação e estabilidade da rede regional de eletricidade, através da capacidade de resposta dinâmica aos recursos energéticos. Para isso, necessitam de uma coordenação de gestão inteligente que equilibre todas as tecnologias ao seu dispor. Daqui surge a necessidade de recorrer a modelos de previsão de carga e de produção robustos e de confiança, que interligam a alocação dos recursos da rede perante as necessidades emergentes.
Sendo assim, foi desenvolvida a metodologia HALOFMI, que tem como principal objetivo a criação de um modelo de previsão de carga para 24 horas. A metodologia desenvolvida é constituída, numa primeira fase, por uma abordagem híbrida de multinível para a criação e escolha de atributos, que alimenta uma rede neuronal (Multi-Layer Perceptron) sujeita a um ajuste de híper-parâmetros. Posto isto, numa segunda fase são testados dois modos de aplicação e gestão de dados para a Micro Rede.
A metodologia desenvolvida é aplicada em dois casos de estudo: o primeiro é composto por perfis de carga agregados correspondentes a dados de clientes em Baixa Tensão Normal e de Unidades de Produção e Autoconsumo (UPAC). Este caso de estudo apresenta-se como um perfil de carga elétrica regular e com contornos muito suaves. O segundo caso de estudo diz respeito a uma ilha turística e representa um perfil irregular de carga, com variações bruscas e difíceis de prever e apresenta um desafio maior em termos de previsão a 24-horas
A partir dos resultados obtidos, é avaliado o impacto da integração de uma seleção recursiva inteligente de atributos, seguido por uma viabilização do processo de redução da dimensão de dados para o operador da Micro Rede, e por fim uma comparação de estimadores usados no modelo de previsão, através de medidores de erros na performance do algoritmo. / Micro Grids constitute a growing sector of the energetic industry, representing a paradigm shift from the central power generation plans to a more distributed generation. The capacity to work isolated from the main electric grid make the MG resilient system, capable of conducting flexible operations while providing services that make the network more competitive. Additionally, Micro Grids supply clean and efficient low-cost energy, enhance the flexible assets coordination and improve the operation and stability of the of the local electric grid, through the capability of providing a dynamic response to the energetic resources. For that, it is required an intelligent coordination which balances all the available technologies. With this, rises the need to integrate accurate and robust load and production forecasting models into the MG management platform, thus allowing a more precise coordination of the flexible resource according to the emerging demand needs.
For these reasons, the HALOFMI methodology was developed, which focus on the creation of a precise 24-hour load forecast model. This methodology includes firstly, a hybrid multi-level approach for the creation and selection of features. Then, these inputs are fed to a Neural Network (Multi-Layer Perceptron) with hyper-parameters tuning. In a second phase, two ways of data operation are compared and assessed, which results in the viability of the network operating with a reduced number of training days without compromising the model's performance. Such process is attained through a sliding window application.
Furthermore, the developed methodology is applied in two case studies, both with 15-minute timesteps: the first one is composed by aggregated load profiles of Standard Low Voltage clients, including production and self-consumption units. This case study presents regular and very smooth load profile curves. The second case study concerns a touristic island and represents an irregular load curve with high granularity with abrupt variations.
From the attained results, it is evaluated the impact of integrating a recursive intelligent feature selection routine, followed by an assessment on the sliding window application and at last, a comparison on the errors coming from different estimators for the model, through several well-defined performance metrics.
|
732 |
Applying Quantum Annealing to the Tail Assignment ProblemLuís Noites Martins 10 August 2020 (has links)
No description available.
|
733 |
Bringing Liveness to Design PatternsFilipe Oliveira e Sousa Ferreira de Lemos 11 August 2020 (has links)
No description available.
|
734 |
Model-to-Model Mapping of Semi-Structured Specifications to Visual Programming LanguagesDanny Almeida Soares 28 August 2020 (has links)
No description available.
|
735 |
Humanoid Robotic Soccer Realistic SimulationIgor Bernardo Amorim Silveira 16 October 2020 (has links)
No description available.
|
736 |
Software library for stream-based recommender systemsFernando André Bezerra Moura Fernandes 27 October 2020 (has links)
Tradicionalmente, um algoritmo de machine learning é capaz de aprender com dados, dado um conjunto tratado e construído anteriormente. Também é possível analisar esse conjunto de dados, usando técnicas de mineração de dados e extrair conclusões a partir dele. Ambos os conceitos têm inúmeras aplicações em todo o mundo, desde diagnósticos médicos até reconhecimento de fala ou mesmo consultas a mecanismos de pesquisa. No entanto, tradicionalmente, supõe-se que o conjunto de dados esteja disponível a todo o momento. Isso não é necessariamente verdade com os dados modernos pois os aplicativos de sistemas distribuídos recebem e processam milhões de fluxos de dados em uma fração de tempo limitado. Portanto, são necessárias técnicas para extrair e processar esses fluxos de dados, em um período de tempo limitado, com bons resultados e dimensionamento eficaz à medida que os dados aumentam. Um sistema específico de análise e previsão de conclusões futuras a partir de dados fornecidos são os sistemas de recomendação. Vários serviços online usam sistemas de recomendação para fornecer conteúdo personalizado a seus usuários. Em muitos casos, as recomendações são um dos geradores de tráfego mais eficazes nesses serviços. O problema reside em encontrar o melhor pequeno subconjunto de itens em um sistema que corresponda às preferências pessoais de cada usuário, através da análise de uma quantidade muito grande de dados históricos. Esse problema recebe mais atenção se for considerado um problema genérico, não específico, ou seja, se uma biblioteca for construída para que possa ser estendida e usada como uma ferramenta para ajudar a construir um sistema para um caso de uso específico. Podem-se distinguir soluções entre perfeitas ou estatisticamente semelhantes. Devido a grande quantidade de dados disponíveis, a decisão de reprocessar todos os dados, sempre que novos dados chegam, não seria viável; portanto, algoritmos incrementais são usados para processar os dados recebidos e manter o modelo de recomendação atualizado. O objetivo real deste trabalho é implementar uma biblioteca que contenha e avalie essas abordagens incrementais para recomendações de que as atuais são específicas da tarefa. / Traditionally, a machine learning algorithm is able to learn from data, given a previously built and treated data set. One can also analyze that data set, using data mining techniques, and draw conclusions from it. Both of these concepts have numerous world-wide applications, from medical diagnosis to speech recognition or even search engine queries. However, traditionally speaking, it is being assumed that the data set is available at all times. That is not necessarily true with modern data, as distributed systems applications receive and process millions of data streams on a limited time fraction. Therefore, there is a need for techniques to mine and process these data streams,on a limited time period with good results and effective scaling as data grows. One specific use case of analyzing and predicting future conclusions from given data, are recommendation systems.Several online services use recommender systems to deliver personalized content to their users.In many cases, recommendations are one of the most effective traffic generators in such services.The problem lies in finding the best small subset of items in a system that matches the personal preferences of each user, through the analysis of a very large amount of historical data. This problem gets more attention if it is considered as a generic problem, not as a specific one, that is,if a library is built so that it can be extended and used as a tool to help build a system for a specific use case. One can distinguish solutions between perfect ones or statistically similar ones. Due to the large amount of data available, the decision to reprocess all the data every time new data arrives, would not be feasible so, incremental algorithms are used to process incoming data and keeping the recommendation model updated. The real purpose of this work is to implement such a library which contains, and evaluates these incremental approaches to recommendation since current ones are task-specific.
|
737 |
Humanoid Robot Kick in Motion Ability for Playing Robotic SoccerHenrique da Silva Teixeira 04 March 2020 (has links)
Robotics and Artificial Intelligence are two deeply intertwined fields of study, currently experiencing formidable growth. To foster these developments, the RoboCup initiative is a fantastic test bed to experiment new approaches. This dissertation seeks to gather these possibilities to design and implement a humanoid robotic kick system employing deep neural networks, capable of fluidly kicking a ball while walking. This dissertation's work is rooted in the groundwork laid by previous FCPortugal3D teams so as to take the existing algorithms and skills into its consideration. In this way, a transition between a dynamic movement situation and one where the agent is kicking is achieved. Furthermore, it uses the new agent framework developed by the FCPortugal3D team so as to allow these tests to be built upon for future situations with ease.
|
738 |
Decentralized Autonomous Vehicles and Control Stations Data Sharing for Partially Disconnected Operation LocationsEduardo de Mendonça Rodrigues Salgado Ramos 10 August 2020 (has links)
No description available.
|
739 |
Representation and quantification of change on spatiotemporal phenomenaEdgar Filipe Amorim Gomes Carneiro 04 September 2020 (has links)
No description available.
|
740 |
Sono ao Volante - Machine Learning para Previsão e Deteção de SonolênciaCláudia Catarina Carvalho Rodrigues 19 September 2020 (has links)
No description available.
|
Page generated in 0.0677 seconds