Spelling suggestions: "subject:"electrical batteries""
51 |
Estimativa da vida sob fadiga de amplitude variavel de um componente mecanicoRICARDO, LUIZ C.H. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:43:55Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:08:37Z (GMT). No. of bitstreams: 1
06786.pdf: 7146263 bytes, checksum: 0ad9a0e558c3dc7c1847019c4d7753a1 (MD5) / Dissertacao [Mestrado] / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
52 |
Desenvolvimento de processo quimico para obtencao da nsutita (gama-MnO sub(2)) de alta densidade empregada na fabricacao de pilhasFERNANDES, ALBERTO de A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:47:03Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:08:48Z (GMT). No. of bitstreams: 1
07916.pdf: 4553798 bytes, checksum: eb42be1de889c1f95e7ccdc661406a8d (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
53 |
Continuum Level Physics-based Model on Understanding and Optimizing the Lithium Transport in High-Energy-Density LIB/LMB ElectrodesHui, Zeyu January 2022 (has links)
As an efficient means of energy storage, rechargeable batteries, especially the lithium-ion batteries (LIBs) have been a vital component in solving the upcoming energy crisis and environmental problems. Recently, the development of electric vehicle market puts new requirement on the next generation LIBs, including superior energy density, safety and cycling stability, etc. Compared with experimental investigation, Physics-based models provide a surrogate method to not only tackle the underlying physics of the complex battery system, but also optimize the design of battery systems. In this thesis, I will show how I use the physics-based continuum model and cooperate with some experimental methods to understand the lithium transport phenomena inside the multiscale battery electrode systems, based on which the models are then applied to guide the experimental optimization of battery electrode design and to quantitively understand the degradation of high-performance electrodes.
The thesis is divided into three parts. First part (Chapter 2) presents a systematical model selection study on the multiscale LiNi₀.₃₃Mn₀.₃₃Co₀.₃₃O₂ (NMC₁₁₁) electrode. Discharge and voltage relaxation curves, interrogated with theory, are used to distinguish between lithium transport impedance that arise on the scale of the active crystal and on the scale of agglomerates (secondary particles) comprised of nanoscale crystals. Model-selection algorithms are applied to determine that the agglomerate scale transport is dominant in the NMC₁₁₁ electrode studied here. This study not only discovers the dominant length scale for lithium transport, but also provide a validated model (the agglomerate model) for later study.
The second part (Chapter 3 & 4) talks about understanding & optimization of ion transport in porous electrodes. In Chapter 3, multi-scale physics-based models for different active material systems, which have been parameterized and validated with discharge experiments, are optimized by varying porosity and mass loading to achieve maximum volumetric energy density. The optimization results show that with a re-scaling of the current rate, the optimal results follow a general design rule that is captured in a convenient correlation. Chapter 4 extends the model to simulate the performance of advanced electrode architectures utilizing aligned channels, by quantifying the impact of aligned channel electrode structures on cell rate capability. Then the optimization algorithm in Chapter 3 is applied to these aligned-channel electrodes.
The final part (Chapter 5) shows how I use the physics-based model to quantitatively analyze the battery degradation. The validated model is applied to cycling data to obtain parameter estimates indicative of degradation modes. It’s found that growth rates of interfacial impedance and active material loss are greater at 4.5 V, as might be expected. However, when charged to 4.5V, degradation rates are lower at a cycling C-rate of 1.0 h⁻¹ than at 0.5 h⁻¹. Once performance changes are quantified, we use further simulation to evaluate the contribution of individual degradation modes to fade of cell performance metric such as capacity, power density, and energy density.
|
54 |
Density functional tight-binding and cluster expansion studies of lithiated/sodiated silicon anodes for high-energy-density batteriesPhoshoko, Katlego William January 2020 (has links)
Thesis (Ph.D. (Physics)) -- University of Limpopo, 2020 / This work presents a computational modelling workflow that uniquely combines
several techniques, proposed as a means for studying and designing high-energy-density electrodes for the next-generation of rechargeable batteries within the era of
the fourth industrial revolution (4IR).
The Self-Consistent Charge Density Functional-based Tight Binding (SCC-DFTB)
parameterisation scheme for the Li-Si and Na-Si systems is presented. By using the
Li-Si system, a procedure for developing the Slater-Koster based potentials is
shown. Using lessons learned from the Li-Si framework, the parameterisation of the
Na-Si is reported. The Li-Si SCC-DFTB parameter set has been developed to handle
environments that consist of Si-Si, Li-Si and Li-Li interactions; and the Na-Si SCC DFTB parameter set is developed for Na-Na, Na-Si, and Si-Si interactions.
Validations and applications of the developed sets are illustrated and discussed.
By calculating equilibrium lattice constants, the Li-Si set is shown to be compatible
with various phases in the crystalline Li-Si system. The results were generally within
a margin of less than 8% difference, with some values such as that of the cubic
Li22Si5 being in agreement with experiments to within 1%. The volume expansion of
Si as a function of Li insertion was successfully modelled via the Li-Si SCC-DFTB
parameter set. It was shown that Si gradually expands in volume from 53.6% for the
LiSi phase composed of 50 atm % Li, to 261.57% for Li15Si4 with 78.95 atm % Li, and
eventually shoots over 300% for the Li22Si5 phase with the expansion at 316.45%,
which agrees with experiments.
Furthermore, the ability of the Li-Si SCC-DFTB parameter set to model the
mechanical properties of Si is evaluated by calculating the mechanical properties of
pristine cubic Si. The parameter set was able to produce the mechanical properties
of Si, which agree with experiments to within 6%. The SCC-DFTB parameter set was
then used to model the volume expansion of amorphous silicon (a-Si) as a result of
lithiation within concentrations ranging from 33 – 50 atm % Li. Consistent with
experiments, the a-Si was found to marginally expand in a linear form with increase
in Li content. a-Si was observed to exhibit a lower expansion compared to c-Si.
Additionally, the structural stability of the amorphous Li-Si alloys was examined, and
observations agree with experiments.vi
The Na-Si SCC-DFTB parameter set produced equilibrium lattice parameters that
agree with experiments to within 4% for reference structures, and the transferability
was tested on three Na-Si clathrate compounds (i.e. the Pm-3n Na8Si46, the Cmcm
NaSi6 and Fd-3m Na24Si136).
By employing the approach used when lithiating Si, the sodiation of crystalline silicon
(c-Si) was modelled. It was predicted that c-Si expands by over 400% at 77 atm%
Na and shoots above 500% for concentrations exceeding 80 atm% of Na. By
comparing how c-Si expands as a result of lithiation to the expansion consequent to
sodiation for concentrations ranging from 66.6 – 81.4 atm%, c-Si is shown to be
unsuitable for Na-ion batteries. As a test, the ability of the developed Na-Si SCC DFTB parameter set to handle large and complex geometries was shown by
modelling the expansion of a-Si at 33 atm% Na. It was deduced that a-Si would be
more preferable for Na-ion batteries since at 33 atm% Na, a-Si expanded a lot less
than when c-Si was used. Using the Li-Si and the Na-Si SCC-DFTB parameter sets,
it was noted that amorphisation appears to lower the magnitude by which Si
expands, therefore agreeing with experiments in that amorphous structures are
reported to exhibit a buffering effect towards volume expansion.
The material space for the Li-Si alloy system is explored through crystal structure
predictions conducted via a machine learning powered cluster expansion (CE).
Using the FCC and BCC – based parent lattice in the grid search, 12
thermodynamically stable Li-Si alloys were predicted by the genetic algorithm. Viz.
the trigonal Li4Si (R-3m), tetragonal Li4Si (I4/m), tetragonal Li3Si (I4/mmm), cubic
Li3Si (Fm-3m), monoclinic Li2Si3 (C2/m), trigonal Li2Si (P-3m1), tetragonal LiSi
(P4/mmm), trigonal LiSi2 (P-2m1), monoclinic LiSi3 (P2/m), cubic LiSi3 (Pm-3m),
tetragonal LiSi4 (I4/m) and monoclinic LiSi4 (C2/m).
The structural stabilities of the predicted Li-Si alloys are further studied. With focus
on pressure, the thermodynamic conditions under which the Li-rich phase, Li4Si (R 3m), would be stable are tested. Li4Si (R-3m) was subjected to pressures during
geometry optimization and found to globally maintain its structural stability within the
range 0 – 25GPa. Hence, Li4Si was predicted to be a low pressure phase. In
studying the PDOS, the Li4Si (I4/m) was noted to be more stable around 40GPa and vii
45GPa, which is consistent with the prediction made from other works, wherein
intelligence-based techniques were used.
A test for exploring the Na-Si material space was done using insights acquired from
the Li-Si framework. Three thermodynamically stable Na-Si (i.e. the I4/mmm Na3Si,
P4/nmm NaSi and Immm NaSi2) were predicted. Using the Na-Si SCC-DFTB
parameter set, a correlation of the total DOS in the vicinity of the Fermi level (Ef) with
the structural stability of the three Na-Si alloys is done. NaSi (P4/nmm) was shown to
be unstable at 0GPa, NaSi2 (Immm) is found to be stable, and the Na-rich Na3Si
exhibited metastability. The stability of Na3Si was seen to improve when external
pressure ranging from 2.5 – 25GPa was applied; hence, suggesting Na3Si (I4/mmm)
to be a high-pressure phase. Furthermore, expanding on the groundwork laid from
the Li-Si and Na-Si CE, the Mg-Si system was tested to illustrate that the approach
can be used to rapidly screen for new materials. The ground-state crystal structure
search predicted 4 thermodynamically stable Mg-Si alloys. Viz. Mg3Si (Pm-3m),
MgSi (P4/mmm), MgSi2 (Immm) and MgSi3 (Pmmm).
Lastly, to highlight the power of combining various computational techniques to
advance material discovery and design, a framework linking SCC-DFTB and CE is
illustrated. Candidate electrode materials with nano-architectural features were
simulated by designing nanospheres comprised of more than 500 atoms, using the
predicted Li-Si and Na-Si crystal structures. The stability of the nanospheres was
examined using SCC-DFTB parameters developed herein. The workflow presented
in this work paves the way for rapid material discovery, which is sought for in the era
of the fourth industrial revolution. / National Cyber Infrastructure System: Center for High-Performance Computing
(NICIS-CHPC) for computing resources, the National Research Foundation (NRF)
and the University of Limpopo
|
55 |
A low ripple bi-directional battery charger/discharger using coupled inductorShum, Kin E. 30 April 2009 (has links)
There are two important issues about a spacecraft power conversion system: low ripple current flowing through both battery and bus, and bi-directional power flow to and from the battery. This thesis introduces a novel low ripple current bi-directional battery charge/discharge converter using coupled-inductor. Bi-directional switch structures and proper control scheme make it possible for the power to flow through the same converter in both directions: charging and discharging the battery. Meanwhile, the coupled-inductor is designed in such a way that all the magnetizing current (ripple current) is confined within the converter, yielding "zero-current-ripple" (ZCR) on both battery side and bus side. ZCR condition analysis, topological comparison with similar approach, and circuit design guide line are given in this thesis. Circuit operation and performance, bi-directional control strategy, and small signal characteristics of the converter are also presented along with experimental verification. / Master of Science
|
56 |
Design of multilayer electrolyte for next generation lithium batteriesMahootcheian Asl, Nina 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Rechargeable lithium ion batteries are widely used in portable consumer electronics such as cellphones, laptops, etc. These batteries are capable to provide high energy density with no memory effect and they have small self-discharge when they are not in use, which increases their potential for future electric vehicles. Investigators are attempting to improve the performance of these cells by focusing on the energy density, cost, safety, and durability. The energy density improves with high operation voltage and high capacity. Before any further development of high voltage materials, safe electrolytes with high ionic conductivity, wide electrochemical window, and high stability with both electrodes need to be developed.
In this thesis a new strategy was investigated to develop electrolytes that can contribute to the further development of battery technology. The first study is focused on preparing a hybrid electrolyte, the combination of inorganic solid and organic liquid, for lithium based rechargeable batteries to illustrate the effect of electrode/electrolyte interfacing on electrochemical performance. This system behaves as a self-safety device at higher temperatures and provides better performance in comparison with the solid electrolyte cell, and it is also competitive with the pure liquid electrolyte cell. Then a multilayer electrolyte cell (MEC) was designed and developed as a new tool for investigating electrode/electrolyte interfacial reactions in a battery system. The MEC consists of two liquid electrolytes (L.E.) separated by a solid electrolyte (S.E.) which prevents electrolyte crossover while selectively transporting Li+ ions. The MEC successfully reproduced the performance of LiFePO4 comparable with that obtained from coin cells. In addition, the origin of capacity fading in LiNi0.5Mn1.5O4full-cell (with graphite negative electrode) was studied using the MEC. The performance of LiNi0.5Mn1.5O4 MEC full-cell was superior to that of coin full-cell by eliminating the Mn dissolution problem on graphite negative electrode as evidenced by transmission electron microscopy (TEM) analysis. The MEC can be a strong tool for identifying the electrochemical performances of future high voltage positive electrode materials and their electrode/electrolyte interfacial reactions. Finally, by employing the multilayer electrolyte concept, a new application will be introduced to recycle the lithium. This study demonstrates the feasibility of using water and the contents of waste Li-ion batteries for the electrodes in a Li-liquid battery system. Li metal was collected electrochemically from a waste Li-ion battery containing Li-ion source materials from the battery’s anode, cathode, and electrolyte, thereby recycling the Li contained in the waste battery at the room temperature.
|
57 |
Carregador de baterias bidirecional com tranformador planarRocha, Fabio Dalla Vecchia 27 August 2013 (has links)
CAPES / Este trabalho traz um estudo da aplicação do conversor Full-Bridge bidirecional como um carregador de banco de baterias em um barramento CC de fontes de energia renováveis. O problema principal destas fontes é que são sazonais e não oferecem uma continuidade de fornecimento de potência. Assim, o uso de banco de baterias, conectado a um barramento CC compartilhado com outras fontes renováveis traz contribuições na continuidade do fornecimento de energia. O conversor proposto neste trabalho visa conectar o banco de baterias ao barramento CC e ao mesmo tempo que faz a integração dos modos de carga e descarga em um único conversor. Adicionalmente, para reduzir volume, é utilizado um transformador planar que oferece alta eficiência (máximo de 99,5%) e uma reduzida relação volume/potência. O conversor foi desenvolvido para carregar um banco de baterias de 192V. No modo de descarga, ele é suado para alimentar um barramento CC de 400V com uma potência máxima de 1,34kW. Apesar do uso do conversor full-bridge não ser novidade nestes tipos de aplicação, dois fatores serviram de motivação para este trabalho: o uso do transformador planar e a tendência mundial de integração de fontes renováveis. / This work presents a study of the application of the Full-bridge bidirectional DC converter as a battery bank charger in a DC bus of renewable energy sources. The main problem is that these sources are seasonal and do not offer a continuously power supply. Thus, the use of a battery bank connected to a DC bus shared with other renewable sources brings contributions in the continuity of power supply. The converter proposed in this work aims to connect the battery bank to the DC bus at the same time it integrates the charging and discharging modes into a single converter. Additionally, to reduce the volume, it is used a planar transformer that provides high efficiency (up to 99.5%) and a reduced volume/power ratio. The converter is designed to charge a bank of batteries of 192V. At the discharge mode, it is designed to feed a 400V DC bus with maximum power of 1.34 kW. Despite the use of the full-bridge converter is not new in these types of application, two factors served as motivation for this work: the use of planar transformer and the global trend of integration of renewable sources.
|
58 |
Carregador de baterias bidirecional com tranformador planarRocha, Fabio Dalla Vecchia 27 August 2013 (has links)
CAPES / Este trabalho traz um estudo da aplicação do conversor Full-Bridge bidirecional como um carregador de banco de baterias em um barramento CC de fontes de energia renováveis. O problema principal destas fontes é que são sazonais e não oferecem uma continuidade de fornecimento de potência. Assim, o uso de banco de baterias, conectado a um barramento CC compartilhado com outras fontes renováveis traz contribuições na continuidade do fornecimento de energia. O conversor proposto neste trabalho visa conectar o banco de baterias ao barramento CC e ao mesmo tempo que faz a integração dos modos de carga e descarga em um único conversor. Adicionalmente, para reduzir volume, é utilizado um transformador planar que oferece alta eficiência (máximo de 99,5%) e uma reduzida relação volume/potência. O conversor foi desenvolvido para carregar um banco de baterias de 192V. No modo de descarga, ele é suado para alimentar um barramento CC de 400V com uma potência máxima de 1,34kW. Apesar do uso do conversor full-bridge não ser novidade nestes tipos de aplicação, dois fatores serviram de motivação para este trabalho: o uso do transformador planar e a tendência mundial de integração de fontes renováveis. / This work presents a study of the application of the Full-bridge bidirectional DC converter as a battery bank charger in a DC bus of renewable energy sources. The main problem is that these sources are seasonal and do not offer a continuously power supply. Thus, the use of a battery bank connected to a DC bus shared with other renewable sources brings contributions in the continuity of power supply. The converter proposed in this work aims to connect the battery bank to the DC bus at the same time it integrates the charging and discharging modes into a single converter. Additionally, to reduce the volume, it is used a planar transformer that provides high efficiency (up to 99.5%) and a reduced volume/power ratio. The converter is designed to charge a bank of batteries of 192V. At the discharge mode, it is designed to feed a 400V DC bus with maximum power of 1.34 kW. Despite the use of the full-bridge converter is not new in these types of application, two factors served as motivation for this work: the use of planar transformer and the global trend of integration of renewable sources.
|
59 |
Sistema georeferenciado de aquisição de dados para caracterização de motos eletricas / Data acquisition system georeferencity for eletrics motorcycles characterizationOliveira, Nestor Ezequiel de 14 August 2018 (has links)
Orientador: Elnatan Chagas Ferreira / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-14T08:58:45Z (GMT). No. of bitstreams: 1
Oliveira_NestorEzequielde_M.pdf: 11297935 bytes, checksum: f508b0e6ae1a58f18ecbebc7879ff5fb (MD5)
Previous issue date: 2009 / Resumo: Aproximadamente 40% da energia total produzida no mundo é consumida no setor de transporte, tendo criado uma grande demanda para estudos de fontes alternativas de energia para os veículos. Este trabalho acadêmico tem como por objetivo apresentar um estudo desenvolvido com veículos elétricos (VEs), com o desenvolvimento de projeto de circuitos eletrônicos de aquisição de dados e condicionamento de sinais das grandezas elétricas e mecânicas, tais como tensão da bateria, corrente elétrica consumida, carga da bateria, temperatura, RPM do motor, velocidade da moto elétrica, sendo que todos os dados são georeferenciados. Estes dados fornecem informações importantes sobre as características e o desempenho das motos elétricas estudadas, além de revelar informações que podem demonstrar a viabilidade de se utilizar este veículo em aplicações comerciais. São apresentados os resultados obtidos com o monitoramento destes VEs durante 12 meses. / Abstract: Approximately 40% of the total energy produced in the world is consumed in the transport sector, having created a great demand for studies of alternative sources of energy for the vehicles. This academic work has as for objective to present a study developed with electric motorcycles (VEs), with the development of project of electronic circuits of acquisition of data and conditioning of signs of the electric and mechanical greatness, such as tension of the battery, consumed electric current, load of the battery, temperature, RPM of the motor, speed of the electric moto, and everybody the data are georeferencing. These data supply important information on the characteristics and the acting of the studied electric motorcycles, besides revealing information that can demonstrate the viability of using this vehicle in commercial applications. The results obtained with the monitoration of these (VEs) for 12 months are presented. / Mestrado / Eletrônica, Microeletrônica e Optoeletrônica / Mestre em Engenharia Elétrica
|
60 |
Quantum-Mechanistic-Based and Data-Driven Prediction of Surface Degradation and Stacking Faults in Battery Cathode MaterialsLi, Xinhao January 2024 (has links)
Batteries play a pivotal role in the modern world, powering everything from portable electronics to electric vehicles, and are critical in the shift towards renewable energy sources by enabling efficient energy storage. This thesis presents new computational strategies to understand and predict surface degradation and stacking faults in battery cathodes, phenomena that have crucial impact on the battery lifetime.
The starting point is a detailed first-principles analysis of LiNiO₂ surface degradation, assessing the thermodynamics of oxygen release and its impact on the surface integrity of this prospective cathode material. This research led to the development of a method for the automated enumeration of surface reconstructions and the development of a Python software package implementing the methodology, thereby greatly accelerating the computational surface characterization of electrode materials. The methodology made it feasible to extend the investigation to LiCoO₂ surfaces, comparing their oxygen retention and surface stability with LiNiO₂ and identifying the unique properties of the two transition metals that control their behavior during battery operation.
In addition to surface phase changes, stacking faults are another important class of two-dimensional defects that can affect the properties of cathode materials. Combining information from first principles calculations with 17O nuclear magnetic resonance (NMR) spectroscopy provided by collaborators, we uncovered how stacking faults affect the capacity and cyclability of Li₂MnO₃ cathodes, a prototypical lithium-rich material with oxygen redox activity. Although automated first-principles calculations are, in principle, an ideal tool for understanding atomic-scale degradation phenomena in batteries, they are computationally demanding and, therefore, limited to materials with simple compositions. In the final chapter, we explore the application of machine learning for further accelerating computational battery degradation simulations by leveraging existing data first-principles calculations for predicting the stability of new surface reconstructions. This chapter points toward a new direction that should be further explored in the future.
The research presented in this thesis not only advances the understanding of lithium-ion battery cathode materials but also introduces more-widely applicable computational methodologies that lay a foundation for the development of advanced materials for energy storage applications. This work demonstrates the benefits of integrating traditional computational methods with machine learning, contributing to ongoing progress in materials science and opening up new possibilities for advancements in energy technology and material engineering.
|
Page generated in 0.0715 seconds