• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fundamental Property of Electric Field in Rapeseed Ester Oil based on Kerr Electro-Optic Measurement

Nakamura, K., Kato, K., Koide, H., Hatta, Y., Okubo, H. January 2006 (has links)
No description available.
2

Measurements of electric fields in a plasma by Stark mixing induced Lyman-α radiation

Ström, Petter January 2013 (has links)
This paper treats a non-intrusive method of measuring electric fields in plasmas and other sensitive or hostile environments. The method is based on the use of an atomic hydrogen beam prepared in the metastable fine structure quantum state 2s1/2. Interaction with the field that is to be measured causes Stark mixing with the closely lying 2p1/2, whose spontaneous decay rate is much higher than that of 2s1/2. As a result, the total transition rate to the ground state and consequently the intensity of the Lyman-α line (121.6nm) is increased. Observations of emitted radiation from a region in which the interaction takes place are used to draw conclusions about the electric field, effectively providing a way to measure it. In the first section, the theory behind the method is described, using time dependent perturbation theory and taking into account both Lamb shift and hyperfine structure. A description of the set-up that we have used to test the theoretical predictions follows and practical aspects related to the operation of the experiment are briefly addressed. Measurements of the dependence of the Lyman-α intensity on both electric field frequency and amplitude are presented and shown to be in agreement with theory. These measurements have been performed in vacuum and in an argon plasma, both for static and RF fields. Two mechanisms, labeled oscillatory and geometrical saturation, that decrease the emitted intensity for strong fields are identified and described, and both are of importance for the future implementation of the studied diagnostic in a fusion device or other plasma experiment. Studies of the field profiles between a pair of electrically polarized plates have been carried out and algorithms for relating measured data to actual values of electric field strength have been developed. For static fields in vacuum, collected data is compensated for geometrical saturation and the resulting profiles are compared to those calculated with a finite element method. Good correspondence is seen in many cases, and where it is not, the discrepancies are explained. Static profile measurements in a plasma show the formation of a sheath whose thickness has been studied while varying discharge current, pressure and plasma frequency. The qualitative dependence of the sheath thickness on these parameters is in accordance with well established theory. When it comes to RF fields, a possible standing wave pattern is detected in the plasma despite problems with low signal to noise ratio. In order to optimize the working conditions of the set-up, effects of charge accumulation due to ions present in the hydrogen beam have been studied as well as errors due to residual particle fluxes during the off-phase when pulsing the beam. A conceptual design suggestion for implementing the method in the edge plasma of a tokamak or another similar device, based on the collected information, is also given.
3

Design optimization of a microelectromechanical electric field sensor using genetic algorithms

Roy, Mark 24 September 2012 (has links)
This thesis studies the application of a multi-objective niched Pareto genetic algorithm on the design optimization of an electric field mill sensor. The original sensor requires resonant operation. The objective of the algorithm presented is to optimize the geometry eliminating the need for resonant operation which can be difficult to maintain in the presence of an unpredictable changing environment. The algorithm evaluates each design using finite element simulations. A population of sensor designs is evolved towards an optimal Pareto frontier of solutions. Several candidate solutions are selected that offer superior displacement, frequency, and stress concentrations. These designs were modified for fabrication using the PolyMUMPs abrication process but failed to operate due to the process. In order to fabricate the sensors in-house with a silicon-on-glass process, an anodic bonding apparatus has been designed, built, and tested.
4

Design optimization of a microelectromechanical electric field sensor using genetic algorithms

Roy, Mark 24 September 2012 (has links)
This thesis studies the application of a multi-objective niched Pareto genetic algorithm on the design optimization of an electric field mill sensor. The original sensor requires resonant operation. The objective of the algorithm presented is to optimize the geometry eliminating the need for resonant operation which can be difficult to maintain in the presence of an unpredictable changing environment. The algorithm evaluates each design using finite element simulations. A population of sensor designs is evolved towards an optimal Pareto frontier of solutions. Several candidate solutions are selected that offer superior displacement, frequency, and stress concentrations. These designs were modified for fabrication using the PolyMUMPs abrication process but failed to operate due to the process. In order to fabricate the sensors in-house with a silicon-on-glass process, an anodic bonding apparatus has been designed, built, and tested.
5

Experimental Investigations of Wave Motion and Electric Resistance in Collisionfree Plasmas

Wendt, Martin January 2001 (has links)
No description available.
6

Experimental Investigations of Wave Motion and Electric Resistance in Collisionfree Plasmas

Wendt, Martin January 2001 (has links)
No description available.
7

Complete Measurement System for Measuring High Voltage and Electrical Field Using Slab-Coupled Optical Fiber Sensors

Stan, Nikola 01 January 2018 (has links)
A slab-coupled optical fiber sensor (SCOS) falls into a narrow class of all-dielectric optical fiber electric field sensors, which makes it a perfect candidate for measurements of high electric fields in environments where presence of conductors is highly perturbing to the system under test. Its nonlinear response to high fields requires a new nonlinear calibration technique. A nonlinear calibration method is explained and demonstrated to successfully measure high electric fields, as well as high voltages with dynamic range up to 50 dB. Furthermore, a SCOS can be fitted into narrow spaces and make highly localized measurements due to its small size. This allows a SCOS to be integrated inside a standard high voltage coaxial cable, such as RG-218. Effects of partial discharge and arcing is minimized by development of a fabrication method to avoid introduction of impurities, especially air-bubbles, into the cable during SCOS insertion. Low perturbation of the measured voltage is shown by simulating the introduced voltage reflections to be on the order of –50 dB. It is also shown that a SCOS can be inserted into other cables without significant perturbation to the voltage. A complete high voltage and high electric field measurement system is built based on the high-voltage modifications of the SCOS technology. The coaxial SCOS is enhanced for robustness. Enhancements include packaging a SCOS into stronger ceramic trough, strengthening the fiber with kevlar reinforced furcation tubing and protecting the sensor with metal braces and protective shells. The interrogator is protected from electromagnetic interference with an RF-shielded box. Reduction in power losses introduced by the new PANDA-SCOS technology allows interrogator bandwidths to be increased up to 1.2 GHz. The whole measurement process is streamlined with dedicated software, developed specifically for high voltage and electric field measurements with support for the nonlinear calibration.
8

Complete Measurement System for Measuring High Voltage and Electrical Field Using Slab-Coupled Optical Fiber Sensors

Stan, Nikola 01 January 2018 (has links)
A slab-coupled optical fiber sensor (SCOS) falls into a narrow class of all-dielectric optical fiber electric field sensors, which makes it a perfect candidate for measurements of high electric fields in environments where presence of conductors is highly perturbing to the system under test. Its nonlinear response to high fields requires a new nonlinear calibration technique. A nonlinear calibration method is explained and demonstrated to successfully measure high electric fields, as well as high voltages with dynamic range up to 50 dB. Furthermore, a SCOS can be fitted into narrow spaces and make highly localized measurements due to its small size. This allows a SCOS to be integrated inside a standard high voltage coaxial cable, such as RG-218. Effects of partial discharge and arcing is minimized by development of a fabrication method to avoid introduction of impurities, especially air-bubbles, into the cable during SCOS insertion. Low perturbation of the measured voltage is shown by simulating the introduced voltage reflections to be on the order of −50 dB. It is also shown that a SCOS can be inserted into other cables without significant perturbation to the voltage.A complete high voltage and high electric field measurement system is built based on the high-voltage modifications of the SCOS technology. The coaxial SCOS is enhanced for robustness. Enhancements include packaging a SCOS into stronger ceramic trough, strengthening the fiber with kevlar reinforced furcation tubing and protecting the sensor with metal braces and protective shells. The interrogator is protected from electromagnetic interference with an RF-shielded box. Reduction in power losses introduced by the new PANDA-SCOS technology allows interrogator bandwidths to be increased up to 1.2 GHz. The whole measurement process is streamlined with dedicated software, developed specifically for high voltage and electric field measurements with support for the nonlinear calibration.
9

Contribution à l'évaluation de la technique de génération d'harmonique par faisceau laser pour la mesure des champs électriques dans les circuits intégrés (EFISHG)

Fernandez, Thomas 25 September 2009 (has links)
Ce travail contribue à l’évaluation de la technique de génération de seconde harmonique induite par un champ électrique quasi statique, ou technique EFISHG, appliquée au domaine de la microélectronique. Une description du principe de la technique EFISHG, basé sur l’optique non linéaire, permet d’appréhender l’origine physique de cette méthode. Un état de l’art a permis d’identifier deux champs d’applications liés à la microélectronique : l’analyse de défaillance, via la mesure en temps de réelle des variations de champs électriques internes dans les circuits intégrés, et la fiabilité par l’étude du piégeage de charges à l’interface Si/SiO2 et de la dégradation dite de « Negative Bias Temperature Instability » ou NBTI. Ce manuscrit présente les différentes étapes qui ont permis l’élaboration d’un banc de test en vue de l’évaluation de l’applicabilité de la technique EFISHG à ces problématiques. Les résultats expérimentaux obtenus avec ce montage ont permis de mettre en avant les possibilités qu’offre la technique EFISHG à caractériser et à accélérer le vieillissement NBTI. / This work concerns the elaboration of an industrial method for Single Event Effect (SEE) sensitivity testing on integrated circuits. The concerned SEEs are those produced by heavy ions and are mainly Single Event Upset (SEU) and Single Event Latchup (SEL). The original test approach chosen in this study relies on the use of infrared laser pulses striking the backside of the tested device. Laser pulse and heavy ion interaction with semiconductor materials are described and a presentation of the particle accelerator test and some former laser test methods is also given. Advantages and drawbacks of those two techniques are discussed. The developed experimental setup uses a near infrared fiber coupled Neodyme/YAG pulsed laser. Its different elements are described. Using this tool to characterise the SEU sensitivity of several modern SRAMs has allowed to define a test methodology. Its efficiency is discussed and illustrated by different experimental results.

Page generated in 0.1026 seconds