• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HIGH PRECISION COULOMETRY AS A TECHNIQUE FOR EVALUATING THE PERFORMANCE AND LIFETIME OF LI-ION BATTERIES

Burns, John Christopher 12 August 2011 (has links)
The aim of this thesis is to develop a better understanding about the degradation mechanisms occurring within lithium-ion cells which eventually lead to their failure. An introduction to the components and operation of Li-ion cells is followed by proposed degradation mechanisms which limit the lifetime of cells. These mechanisms and how they can be identified from electrochemical testing are discussed. Electrolyte additives can be used to improve the safety of Li-ion cells or decrease the rate of cell degradation. Different types of additives and testing methods are discussed followed by an introduction to high precision coulometry which can be used to detect the impact of additives on cycling performance. The High Precision Charger that was constructed for this project is described and shown to meet the desired precision. The use of additives and different materials to extend lifetime of cells is shown to be detectable through the use of high precision coulometry. High precision coulometry proves to be a more efficient way of estimating the lifetime of cells under realistic conditions in a reasonably short amount of time. / MSc. Thesis
2

STUDY OF ELECTROLYTE ADDITIVES IN LI-ION BATTERIES USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY ON SYMMETRIC CELLS

Petibon, Remi 22 August 2013 (has links)
Electrolyte additives are generally used in commercial Li-ion cells to improve capacity retention and calendar life. Although it is apparent that electrolyte additives play an important role, the details of how they work are poorly understood. In order to be able to distinguish the effect of an additive on the positive or negative electrodes, an experimental method has been developed based on electrochemical impedance spectroscopy of symmetric cells constructed from electrodes of disassembled full cells similar to the method described by previous workers. This technique proved to be useful and showed that the effects of additives on both electrodes depend strongly on their concentration. It also showed that in some cases, when two additives are introduced in the same cell, both additives contribute to the formation of the surface layer of both electrodes. In other cases, each additive controls the formation of the surface layer of only one electrode.
3

Non-aqueous Electrolytes and Interfacial Chemistry in Lithium-ion Batteries

Xu, Chao January 2017 (has links)
Lithium-ion battery (LIB) technology is currently the most promising candidate for power sources in applications such as portable electronics and electric vehicles. In today's state-of-the-art LIBs, non-aqueous electrolytes are the most widely used family of electrolytes. In the present thesis work, efforts are devoted to improve the conventional LiPF6-based electrolytes with additives, as well as to develop alternative lithium 2-trifluoromethyl-4,5-dicyanoimidazole (LiTDI)-based electrolytes for silicon anodes. In addition, electrode/electrolyte interfacial chemistries in such battery systems are extensively investigated. Two additives, LiTDI and fluoroethylene carbonate (FEC), are evaluated individually for conventional LiPF6-based electrolytes combined with various electrode materials. Introduction of each of the two additives leads to improved battery performance, although the underlying mechanisms are rather different. The LiTDI additive is able to scavenge moisture in the electrolyte, and as a result, enhance the chemical stability of LiPF6-based electrolytes even at extreme conditions such as storage under high moisture content and at elevated temperatures. In addition, it is demonstrated that LiTDI significantly influences the electrode/electrolyte interfaces in NMC/Li and NMC/graphite cells. On the other hand, FEC promotes electrode/electrolyte interfacial stability via formation of a stable solid electrolyte interphase (SEI) layer, which consists of FEC-derivatives such as LiF and polycarbonates in particular. Moreover, LiTDI-based electrolytes are developed as an alternative to LiPF6 electrolytes for silicon anodes. Due to severe salt and solvent degradation, silicon anodes with the LiTDI-baseline electrolyte showed rather poor electrochemical performance. However, with the SEI-forming additives of FEC and VC, the cycling performance of such battery system is greatly improved, owing to a stabilized electrode/electrolyte interface. This thesis work highlights that cooperation of appropriate electrolyte additives is an effective yet simple approach to enhance battery performance, and in addition, that the interfacial chemistries are of particular importance to deeply understand battery behavior.
4

ELECTRODE AND ELECTROLYTE ADDITIVES FOR LIFETIME EXTENSION IN LITHIUM-ION BATTERIES

Narayana, Kishore Anand 01 January 2014 (has links)
Lithium-ion batteries (LIBs) are the most commonly used type of rechargeable batteries with a global market estimated at $11 billion, which is predicted to grow to $60 billion by 2020. The global commercialization of Li-ion batteries is impeded by issues such as poor cycle life (5000 cycles achieved in some LIBs) in high energy and power density applications because of the rising internal resistance due to aging and safety concerns such as overcharge which ultimately leads to thermal runaway and explosions. A battery’s performance mainly depends on external factors such as electrode thickness and degree of compacting, and the type of conductive additive and electrolyte mixture used, and internal factors such as its internal temperature and state of charge. The performance suffers due to aging or erroneous mechanisms such as decomposition of the electrode or electrolyte material affecting the lifetime. In this thesis, an attempt is made to improve the lifetimes of the Li-ion batteries by incorporating suitable electrolyte additives, which were incorporated in the battery electrolyte to prevent overcharge. Also, several conductive electrode additives were incorporated as filler materials in an anode to explore the effects on its discharge capacities.
5

The Complex Nature of the Electrode/Electrolyte Interfaces in Li-ion Batteries : Towards Understanding the Role of Electrolytes and Additives Using Photoelectron Spectroscopy

Ciosek Högström, Katarzyna January 2014 (has links)
The stability of electrode/electrolyte interfaces in Li-ion batteries is crucial to the performance, lifetime and safety of the entire battery system. In this work, interface processes have been studied in LiFePO4/graphite Li-ion battery cells.  The first part has focused on improving photoelectron spectroscopy (PES) methodology for making post-mortem battery analyses. Exposure of cycled electrodes to air was shown to influence the surface chemistry of the graphite. A combination of synchrotron and in-house PES has facilitated non-destructive interface depth profiling from the outermost surfaces into the electrode bulk. A better understanding of the chemistry taking place at the anode and cathode interfaces has been achieved. The solid electrolyte interphase (SEI) on a graphite anode was found to be thicker and more inhomogeneous than films formed on cathodes. Dynamic changes in the SEI on cycling and accumulation of lithium close to the carbon surface have been observed.    Two electrolyte additives have also been studied: a film-forming additive propargyl methanesulfonate (PMS) and a flame retardant triphenyl phosphate (TPP). A detailed study was made at ambient and elevated temperature (21 and 60 °C) of interface aging for anodes and cathodes cycled with and without the PMS additive. PMS improved cell capacity retention at both temperatures. Higher SEI stability, relatively constant thickness and lower loss of cyclable lithium are suggested as the main reasons for better cell performance. PMS was also shown to influence the chemical composition on the cathode surface. The TPP flame retardant was shown to be unsuitable for high power applications. Low TPP concentrations had only a minor impact on electrolyte flammability, while larger amounts led to a significant increase in cell polarization. TPP was also shown to influence the interface chemistry at both electrodes. Although the additives studied here may not be the final solution for improved lifetime and safety of commercial batteries, increased understanding has been achieved of the degradation mechanisms in Li-ion cells. A better understanding of interface processes is of vital importance for the future development of safer and more reliable Li-ion batteries.
6

Zkoumání vlivu aditiv elektrolytu na vlastnosti olověných akumulátorů / The examination of the influence of electrolyte additives to lead acid batteries properties

Abrle, Ladislav January 2013 (has links)
Lead-acid battery serves as the primary power source for vehicles. The total lifetime is determined by the parameters identified in the production, but also handling the operation and maintenance. This work deals with the effect of additives in the electrolyte added before and after the formation of cells lead-acid battery. The work deals with the influence of these additives during cyclic mode.
7

Accumulateurs Li/S : barrières organiques à la réactivité des polysulfures / Li/secondary Cell : organic protections polysulfide reactvity

Vinci, Valentin 01 June 2018 (has links)
Les objectifs de ce travail de thèse étaient d’explorer de nouvelles voies pour l’amélioration des performances des accumulateurs Li/S, systèmes présentant de fortes densités d’énergie théorique dont les performances sont limitées par un mécanisme électrochimique incluant des intermédiaires solubles et réactifs. Ces intermédiaires induisent une faible efficacité coulombique et une perte importante de capacité au cours du cyclage. Plusieurs stratégies ont été mises en place pour créer une barrière de nature organique, au transport ou à la réactivité de ces polysulfures, tout en gardant une approche versatile et simple à mettre en œuvre. De bons résultats ont été obtenus en termes d’efficacité coulombique et de cyclabilité, notamment grâce à l’utilisation d’un matériau polymère capable d’interactions ioniques avec les intermédiaires soufrés. Le mécanisme de dépôt du lithium et de croissance dendritique a été également étudié, pour une compréhension plus complète du système. / The objectives of this thesis work were to explore new strategies to improve the performance of Li / S accumulators, systems exhibit with high theoretical energy densities whose performance is limited by an electrochemical mechanism including soluble and reactive intermediates. These intermediates induce a low coulombic efficiency and a significant loss of capacity during cycling. Several strategies have been evaluated to create a barrier of organic nature, which mitigate the transport or the reactivity of these polysulfides. The solutions explored are versatile and simple to implement. Good results have been obtained in terms of coulombic efficiency and cyclability, in particular through the use of a polymeric material enables to form ionic interactions with the sulfur intermediates. The mechanism of lithium deposition and dendritic growth has also been studied, for a more complete understanding of the system.
8

Etude et modélisation de l'interface graphite/électrolyte dans les batteries lithium-ion / Study and establishment of a model of the graphite/electrolyte interface in lithium-ion batteries

Chhor, Sarine 19 December 2014 (has links)
Cette thèse se positionne dans le domaine des batteries lithium-ion. Elle a pourobjectif de mieux comprendre le fonctionnement de l’électrode négative de graphiteen étudiant le processus de formation du film de passivation, couramment appeléSEI (Solid Electrolyte Interface) créé à l’interface avec l’électrolyte. Ce travail nousa conduit à proposer des modèles pouvant expliquer comment se forme la SEI et àidentifier les phénomènes qui entrent en jeu dans le fonctionnement de la batterie.La SEI résulte de la réaction entre l’électrode de graphite, les ions lithium et les moléculesorganiques de l’électrolyte qui survient lors du premier processus d’insertion.Elle est principalement composée des produits de décomposition de l’électrolyte etles ions lithium consommés ne sont plus échangeables. Elle est donc responsable dela capacité irréversible observée lors du premier cycle de formation, correspondantà la différence de capacité entre le processus d’insertion et le processus de désinsertion.Il est donc essentiel de mieux comprendre les paramètres qui l’influencentpour pouvoir ainsi la contrôler et limiter la perte irréversible de capacité. Les performancesen capacité de l’élément lithium-ion sont directement liées à cette valeurde capacité irréversible, elle doit être limitée afin de maximiser la quantité d’ionslithium échangée entre l’électrode négative et l’électrode positive. La stabilité dela SEI conditionne ensuite le comportement en cyclage de l’électrode au cours dutemps.Dans ce mémoire de thèse, nous avons choisi de caractériser le comportement del’électrode de graphite en faisant varier la nature de l’électrolyte et la taille desparticules de graphite tout en restant le plus proche possible du fonctionnementd’une vraie batterie. Au travers des techniques de caractérisations électrochimiques(cyclage galvanostatique, spectroscopie d’impédance) associées à des techniques decaractérisation de surface (spectroscopie de photoélectrons X, microscopie électroniqueà balayage), les résultats obtenus ont permis de proposer un nouveau modèlede formation de la SEI.Pour l’électrolyte, nous avons choisi de ne regarder que l’effet du solvant (le carbonatede propylène) et de l’additif (le carbonate de vinylène). Ces deux composésentrent dans la composition des électrolytes utilisés dans les éléments lithium-ioncommerciaux. Pour l’électrode de graphite, le choix des particules s’avère primordialpuisque chaque type de particules possède une chimie de surface spécifique (plans223basaux ou plans prismatiques) susceptible de réagir différemment vis-à-vis de l’électrolyte.Deux particules de graphite, de taille et de morphologie différentes, ont étéétudiées. Elles sont utilisées séparément en tant que matière active dans les électrodesnégatives des batteries lithium-ion. Notre spécificité est d’avoir préparé desélectrodes constituées par un mélange de ces deux particules et de les avoir ensuitecaractérisées en formation. L’application de conditions de fonctionnement différentescomme le régime de cyclage et la température d’essai ont mis en évidence les valeursidéales conduisant à minimiser la dégradation de l’électrolyte et à optimiser laqualité du film.Nous avons abouti, au travers de l’ensemble des méthodes de caractérisations misesen oeuvre, à une meilleure compréhension des mécanismes de formation du film depassivation permettant ainsi d’améliorer cette étape essentielle à la pérennité desperformances de l’électrode dans le temps. Ce travail a donc un réel impact auniveau industriel. Le modèle de formation proposé apporte un éclairage nouveau auprocessus de formation et peut permettre également d’aider en amont à la fabricationdes particules de graphite. / This work relates to the lithium ion battery field. The purpose of this study is tobetter understand the behavior of graphite electrodes by focusing on the formationof a passive layer named Solid Electolyte Interface (SEI) which is formed at thegraphite/electrolyte interface. This work has led us to put forward models whichcan explain the SEI formation and identify the reactions which take place in alithium ion battery.The SEI results from reactions between graphite electrode, lithium ions and organicmolecules from the electrolyte during the first charge of the lithium ion battery. It ismainly composed of decomposition products from the electrolyte. Consumed lithiumions can no longer be used in the next cycle. The SEI is therefore responsible for theirreversible capacity during the first formation cycle which is the charge loss betweenthe intercalation process and the deintercalation process. It is necessary to betterunderstand the impact of the formation conditions and other parameters in orderto control and limit the irreversible charge loss. Lithium ion battery performancesdepend on this irreversible capacity, this value has to be reduced in order to maximizethe amount of exchanged lithium ions between negative and positive electrodes. TheSEI stability will determine the electrode behavior upon cycling.In this thesis, we chose to study the graphite behavior by testing several electrolytecompositions and graphite particle sizes in electrochemical cells similar to areal battery. Electrochemical techniques (galvanostatic cycling and electrochemicalimpedance spectroscopy) and surface analyses (X-ray photoelectron spectroscopy,scanning electron microscopy) will be combined. These results helped us to developa new model of the SEI formation.For the electrolyte, we chose to study the effect of the solvent (propylene carbonate)and the additive (vinylene carbonate). Both components are commonly used inthe electrolyte for commercial lithium ion batteries. For the graphite electrode, thechoice of graphite particles is essential because each graphite family has its ownsurface chemistry (basal and prismatic surfaces) which can react in many wayswith the electrolyte. Two graphite particles, with specific sizes and morphologiesare studied. They are separately used as active materials for negative electrodes inlithium ion batteries. Our unique approach is to prepare graphite electrodes basedon a mix of both particles with various compositions and then test the electrode225performances. After testing several formation conditions such as the cycling rateand the temperature, we found the ideal formation conditions for minimizing theelectrolyte decomposition and optimizing the film quality.Finally, based on all the characterization methods, we came to a better understandingof the film formation process. In this way, we have improved this essentialpreliminary step which can now lead to more durable cycling performances overtime. This study can have a major impact on the industrial level. The formationmodel cast a new light on the formation process and can therefore help to makeefficient graphite electrodes.

Page generated in 0.0713 seconds