• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ELECTRODE AND ELECTROLYTE ADDITIVES FOR LIFETIME EXTENSION IN LITHIUM-ION BATTERIES

Narayana, Kishore Anand 01 January 2014 (has links)
Lithium-ion batteries (LIBs) are the most commonly used type of rechargeable batteries with a global market estimated at $11 billion, which is predicted to grow to $60 billion by 2020. The global commercialization of Li-ion batteries is impeded by issues such as poor cycle life (5000 cycles achieved in some LIBs) in high energy and power density applications because of the rising internal resistance due to aging and safety concerns such as overcharge which ultimately leads to thermal runaway and explosions. A battery’s performance mainly depends on external factors such as electrode thickness and degree of compacting, and the type of conductive additive and electrolyte mixture used, and internal factors such as its internal temperature and state of charge. The performance suffers due to aging or erroneous mechanisms such as decomposition of the electrode or electrolyte material affecting the lifetime. In this thesis, an attempt is made to improve the lifetimes of the Li-ion batteries by incorporating suitable electrolyte additives, which were incorporated in the battery electrolyte to prevent overcharge. Also, several conductive electrode additives were incorporated as filler materials in an anode to explore the effects on its discharge capacities.
2

Untersuchungen zum Einfluss von Elektrodenkennwerten auf die Performance kommerzieller graphitischer Anoden in Lithium-Ionen-Batterien

Zier, Martin 20 January 2015 (has links) (PDF)
Die vorliegende Arbeit liefert einen Beitrag zum Verständnis der elektrochemischen Prozesse an der Elektrodengrenzfläche und im Festkörper graphitischer Anoden für Lithium-Ionen-Batterien. Der Zusammenhang zwischen den intrinsischen Eigenschaften des Aktivmaterials und den resultierenden Eigenschaften von Kompositelektroden stand dabei im Fokus der Untersuchungen. Die Temperaturabhängigkeit von Materialeigenschaften (Diffusionskoeffizient, Austauschstromdichte) und Elektrodeneigenschaften (Verhalten unter Strombelastung) wurde in einem Bereich von 40 °C bis -10 °C erfasst. Dazu werden elektrochemische Charakterisierungsmethoden aus der Literatur vorgestellt und hinsichtlich ihrer Gültigkeit für die Anwendung an realen Elektroden evaluiert. Die elektrochemisch aktive Oberfläche wurde bestimmt und stellte sich als ausschlaggebender Parameter für die Bewertung der Elektrodenprozesse heraus. Auf Basis korrigierter Elektrodenoberflächen konnten Austauschstromdichten für die konkurrierenden Prozesse Lithium-Interkalation und -Abscheidung ermittelt werden. Zusammen mit Kennwerten zur Keimbildungsüberspannung für Lithium-Abscheidung flossen die ermittelten Kennwerte in eine theoretische Berechnung des Zellstroms ein. Es konnte gezeigt werden, dass die Lithium-Abscheidung kinetisch deutlich gegenüber der Lithium-Interkalation bevorzugt ist, nicht nur bei niedriger Temperatur. Die Übertragbarkeit wissenschaftlicher Grundlagenexperimente auf kommerzielle Systeme war bei allen Versuchen Gegenstand der Untersuchungen. In einem separaten Beispiel einer Oberflächenmodifikation mit Zinn wurde diese Problematik besonders verdeutlicht. Zusätzlich wurde die parasitäre Abscheidung von Lithium auf graphitischen Anoden hinsichtlich der Nachweisbarkeit und Quantifizierung evaluiert. Hierfür wurde eine neue Untersuchungsmethode im Bereich der Lithium-Ionen-Batterie zur besseren Detektion von Lithium-Abscheidung und Grenzflächen-Morphologie mittels Elektronenmikroskopie entwickelt. Die Osmiumtetroxid (OsO4) Färbung ermöglichte eine deutliche Verbesserung des Materialkontrasts und erlaubte somit eine gezielte Untersuchung von graphitischen Anoden nach erfolgter Lithium-Abscheidung. Darüber hinaus konnte die selektive Reaktion des OsO4 für eine genauere Betrachtung der Solid Electrolyte Interphase genutzt werden. Eine Stabilisierung der Proben an Luft und im Elektronenstrahl konnte erreicht werden. / This work sheds light on the electrochemical processes occurring at commercially processed graphitic anodes. It raises the question whether values published in literature for mostly ideal electrode systems can be readily taken for simulation and design of real electrodes in high-energy cells. A multiple step approach is given, evaluating different methods to determine electrode and material properties independently. The electrochemically active surface area was shown to be a crucial parameter for the calculation of electrode kinetics. Using exchange current densities corrected for the electrode surface area, the overall charging current in a cell could be calculated. The resulting part of lithium deposition in the charging process is strikingly high, not only at low temperatures. To further investigate lithium deposition in terms of morphology and quantity, a method was developed for graphitic anodes. Osmium tetroxide (OsO4) staining serves well as a tool to strongly increase material contrast in electron microscopy. Thus lithium dendrites could be made visible in an unprecedented manner. Furthermore, the selective chemical reaction of osmium tetroxide allows for a better investigation of the multi-layer solid electrolyte interphase as was shown in transmission electron microscopy. Using the staining method, a stabilization of the sample under air and in the electron beam could be achieved.
3

Untersuchungen zum Einfluss von Elektrodenkennwerten auf die Performance kommerzieller graphitischer Anoden in Lithium-Ionen-Batterien

Zier, Martin 11 November 2014 (has links)
Die vorliegende Arbeit liefert einen Beitrag zum Verständnis der elektrochemischen Prozesse an der Elektrodengrenzfläche und im Festkörper graphitischer Anoden für Lithium-Ionen-Batterien. Der Zusammenhang zwischen den intrinsischen Eigenschaften des Aktivmaterials und den resultierenden Eigenschaften von Kompositelektroden stand dabei im Fokus der Untersuchungen. Die Temperaturabhängigkeit von Materialeigenschaften (Diffusionskoeffizient, Austauschstromdichte) und Elektrodeneigenschaften (Verhalten unter Strombelastung) wurde in einem Bereich von 40 °C bis -10 °C erfasst. Dazu werden elektrochemische Charakterisierungsmethoden aus der Literatur vorgestellt und hinsichtlich ihrer Gültigkeit für die Anwendung an realen Elektroden evaluiert. Die elektrochemisch aktive Oberfläche wurde bestimmt und stellte sich als ausschlaggebender Parameter für die Bewertung der Elektrodenprozesse heraus. Auf Basis korrigierter Elektrodenoberflächen konnten Austauschstromdichten für die konkurrierenden Prozesse Lithium-Interkalation und -Abscheidung ermittelt werden. Zusammen mit Kennwerten zur Keimbildungsüberspannung für Lithium-Abscheidung flossen die ermittelten Kennwerte in eine theoretische Berechnung des Zellstroms ein. Es konnte gezeigt werden, dass die Lithium-Abscheidung kinetisch deutlich gegenüber der Lithium-Interkalation bevorzugt ist, nicht nur bei niedriger Temperatur. Die Übertragbarkeit wissenschaftlicher Grundlagenexperimente auf kommerzielle Systeme war bei allen Versuchen Gegenstand der Untersuchungen. In einem separaten Beispiel einer Oberflächenmodifikation mit Zinn wurde diese Problematik besonders verdeutlicht. Zusätzlich wurde die parasitäre Abscheidung von Lithium auf graphitischen Anoden hinsichtlich der Nachweisbarkeit und Quantifizierung evaluiert. Hierfür wurde eine neue Untersuchungsmethode im Bereich der Lithium-Ionen-Batterie zur besseren Detektion von Lithium-Abscheidung und Grenzflächen-Morphologie mittels Elektronenmikroskopie entwickelt. Die Osmiumtetroxid (OsO4) Färbung ermöglichte eine deutliche Verbesserung des Materialkontrasts und erlaubte somit eine gezielte Untersuchung von graphitischen Anoden nach erfolgter Lithium-Abscheidung. Darüber hinaus konnte die selektive Reaktion des OsO4 für eine genauere Betrachtung der Solid Electrolyte Interphase genutzt werden. Eine Stabilisierung der Proben an Luft und im Elektronenstrahl konnte erreicht werden. / This work sheds light on the electrochemical processes occurring at commercially processed graphitic anodes. It raises the question whether values published in literature for mostly ideal electrode systems can be readily taken for simulation and design of real electrodes in high-energy cells. A multiple step approach is given, evaluating different methods to determine electrode and material properties independently. The electrochemically active surface area was shown to be a crucial parameter for the calculation of electrode kinetics. Using exchange current densities corrected for the electrode surface area, the overall charging current in a cell could be calculated. The resulting part of lithium deposition in the charging process is strikingly high, not only at low temperatures. To further investigate lithium deposition in terms of morphology and quantity, a method was developed for graphitic anodes. Osmium tetroxide (OsO4) staining serves well as a tool to strongly increase material contrast in electron microscopy. Thus lithium dendrites could be made visible in an unprecedented manner. Furthermore, the selective chemical reaction of osmium tetroxide allows for a better investigation of the multi-layer solid electrolyte interphase as was shown in transmission electron microscopy. Using the staining method, a stabilization of the sample under air and in the electron beam could be achieved.

Page generated in 0.0853 seconds