• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 723
  • 31
  • 18
  • 6
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 1059
  • 513
  • 376
  • 364
  • 343
  • 98
  • 91
  • 90
  • 90
  • 81
  • 68
  • 66
  • 65
  • 64
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

SIMULATOR INDEPENDENT EXACT ADJOINT SENSITIVITY ANALYSIS OF SELF-ADJOINT MICROWAVE STRUCTURES

Dadash, Mohammad Sadegh 10 1900 (has links)
<p>This thesis proposes a new analytical self-adjoint sensitivity analysis to calculate the Jacobian of the <em>S</em>-parameters for metallic shape parameters. This method is independent of the full-wave numerical analysis and the respective system matrix. The theory works for both volumetric and infinitesimally thin metallic shapes. It exploits the computational efficiency of the self-adjoint sensitivity analysis (SASA) approach where only one EM simulation suffices to obtain both the responses and their gradients in the designable parameter space.</p> <p>There are three major advantages to this development: (1) the Jacobian computation for metallic structures is completely analytical and there is no approximation involved in the sensitivity analysis of shape parameters; (2) the implementation is straightforward and in the form of a post-processing algorithm operating on the exported field solutions on the surface or around the edge of the metallic structure; and (3) it provides the possibility for exact sensitivity analysis with all electromagnetic high-frequency simulators whose system matrices are not available to export or are not differentiable with respect to shape parameters, e.g., simulators based on the FDTD method and the MoM.</p> <p>The method was verified in a number of examples using a commercial finite-element solver. The agreement between the results calculated with the proposed method and the reference self-adjoint sensitivity curves provided with the simulator are very promising.</p> <p>Suggestions for future work are provided.</p> / Master of Applied Science (MASc)
322

Design, Modeling and Simulation of Planar Waveguide Time Domain Optical Fourier Transformer

Tang, Rui 10 1900 (has links)
<p>A novel planar waveguide Time Domain Optical Fourier Transformer (TD-OFT), which is composed of waveguide lenses and blazed phase gratings, is proposed. A detailed mathematical derivation based on scalar diffraction optics is presented. In order to verify the theoretical analysis, the reciprocity in TD-OFT is also studied. Three different pulse examples, including the Gaussian pulse, square pulse and square pulse train, are implemented by analytical formulations. To evaluate the device performance, the similarity coefficient is defined. The results show that the similarity increases as the device aperture increases. However, there is trade-off between the similarity and the spectra resolution. For the input pulse, under the circumstance of same similarity, the shorter temporal pulse duration (larger bandwidth) needs smaller aperture size. Improved waveguide lens is particularly designed and then the whole device is simulated by Extension of BPM (EX-BPM) with two specific pulses, Gaussian and raised cosine pulse. The simulation results are also verified by reciprocity theorem using the numerical method. The designed TD-OFT occupies a size about 600μm (in width)×5mm (in length) for an ultrafast pulse around 10fs. It is possible to make the device size even smaller either by reducing the focal length of the collimating lens or enlarging the bandwidth of input pulse. Compared with currently proposed TD-OFT made by discrete photonic and optoelectronic components, this design can be integrated with a more compact size and seems more appealing on the simulated performance and fabrication cost. As a result, the planar waveguide TD-OFT has great potential in the next ultrafast optical network.</p> / Master of Applied Science (MASc)
323

Surface-Plasmon-Polariton-Waveguide Superluminescent Diode: Design, Modeling and Simulation

Ranjbaran, Mehdi 04 1900 (has links)
<p>Since the inception of integrated electronic circuits there has been a trend of miniaturizing as many electronic, optical and even mechanical circuits and systems as possible. For optical applications this naturally led to the invention of semiconductor optical sources such as the laser diode (LD) and the light emitting diode (LED). A third device, the superluminescent diode was later invented to offer an output with a power similar to that of an LD and spectral width similar to that of an LED. However, there is usually a trade off between the output power and spectral width of the generated beam. The main challenge in the development of SLD is, therefore, finding ways to mitigate the power-spectral linewidth trade off.</p> <p>Previous work has two major directions. In the first one the goal is to eliminate facet reflections thus preventing lasing from happening. The detrimental effect of lasing is that even before it starts the spectral width quickly narrows down. In the second research direction the goal is to make the material gain spectrum wider by playing with different parameters of quantum well active regions.</p> <p>This research work explores yet another way of broadening output spectrum of SLD while allowing the power to increase at the same time. The surface-plasmon waveguide (SPWG) has been proposed to replace the dielectric waveguide, for the first time. A novel SPWG structure is introduced and designed to optimize the device performance in terms of the output power, spectral width and their product known as the power-linewidth product. The effect of different parameters of the new structure on the output light is investigated and attention is given to the high power, high spectral width and high power-linewidth product regimes.</p> / Doctor of Philosophy (PhD)
324

DESIGN OPTIMIZATION AND MODELING OF PLASMONIC STRUCTURES

El, Sherif H Mohamed 10 1900 (has links)
<p>In this thesis, we discuss the study and realization of surface plasmon polaritons (SPPs) and their devices. Plasmonics is the emerging field that will help technologies advance further into the nano-scale without the concern for delays or size limitations. SPPs are a more advanced field of photonics as they use metals instead of the semiconductors or insulators used in optics. They operate at frequencies in the light and near infrared spectrum, as this range produces their unique characteristics. Plasmonics possess the miniaturization of electronics and the speed of photonics. They do not suffer from both the delays in nano-electronics, and the size limitations faced in optics. In this thesis, we present the optimization of plasmonic slit arrays by designing the parabolic phase profile of the array. Moreover, we present a novel multilevel plasmonic coupler that will aid in the realization of 3-D plasmonic chips, as well as quadrature modulation. The theory, procedures, and results are all presented and discussed.</p> / Master of Applied Science (MASc)
325

Design of Silicon Photonics External Cavity Laser

Zheng, Jiamin January 2014 (has links)
<p>The development of silicon photonics, driven by the increasing demand for bandwidth from data centre applications, is receiving growing attention. As a result of the indirect bandgap of Si material, it is more practical to heterogeneously incorporate the laser source than fabricate directly on Si. Of all the approaches, an external cavity laser (ECL) approach which consists of III-V gain material and Si photonic integrated circuit (SiPIC), is a flexible and cost effective solution. This thesis captures theoretical and experimental work on the design of SiPIC ECLs. In addition, a four wavelength laser source using an SiPIC ECL scheme is proposed and studied.</p> <p>The theoretical tool is first introduced on the traveling wave model (TWM) and it is numerically solved with FDTD in Matlab. A digital filter approach is used to describe the feedback from an SiPIC external cavity, where the phase delay of the digital filter is investigated and utilized to set the cavity length.</p> <p>The III-V gain chip and SiPIC are then examined separately for their characterization, along with the coupling and feedback requirements in an ECL design.</p> <p>Lastly, experiments are conducted to demonstrate the feasibility of four wavelength ECLs and SiPIC ECLs.</p> / Master of Applied Science (MASc)
326

Acceleration Methods of Discontinuous Galerkin Integral Equation for Maxwell's Equations

Lee, Chung Hyun 15 September 2022 (has links)
No description available.
327

Application of multi-core and cluster computing to the Transmission Line Matrix method

Browne, Daniel R. January 2014 (has links)
The Transmission Line Matrix (TLM) method is an existing and established mathematical method for conducting computational electromagnetic (CEM) simulations. TLM models Maxwell s equations by discretising the contiguous nature of an environment and its contents into individual small-scale elements and it is a computationally intensive process. This thesis focusses on parallel processing optimisations to the TLM method when considering the opposing ends of the contemporary computing hardware spectrum, namely large-scale computing systems versus small-scale mobile computing devices. Theoretical aspects covered in this thesis are: The historical development and derivation of the TLM method. A discrete random variable (DRV) for rain-drop diameter,allowing generation of a rain-field with raindrops adhering to a Gaussian size distribution, as a case study for a 3-D TLM implementation. Investigations into parallel computing strategies for accelerating TLM on large and small-scale computing platforms. Implementation aspects covered in this thesis are: A script for modelling rain-fields using free-to-use modelling software. The first known implementation of 2-D TLM on mobile computing devices. A 3-D TLM implementation designed for simulating the effects of rain-fields on extremely high frequency (EHF) band signals. By optimising both TLM solver implementations for their respective platforms, new opportunities present themselves. Rain-field simulations containing individual rain-drop geometry can be simulated, which was previously impractical due to the lengthy computation times required. Also, computationally time-intensive methods such as TLM were previously impractical on mobile computing devices. Contemporary hardware features on these devices now provide the opportunity for CEM simulations at speeds that are acceptable to end users, as well as providing a new avenue for educating relevant user cohorts via dynamic presentations of EM phenomena.
328

Three-dimensional computation of light scattering by multiple biological cells

Starosta, Matthew Samuel, 1981- 01 October 2010 (has links)
This work presents an investigation into the optical scattering of heterogeneous cells with an application to two-photon imaging, optical scattering measurements and STED imaging. Using the finite difference time-domain (FDTD) method, the full-wave scattering by many cells containing multiple organelles with varying indices of refraction is computed. These simulations were previously limited to single cells for reasons of computational cost. A superposition approximation that uses the coherent linear superposition of FDTD-determined farfield scattering patterns of small numbers of cells to estimate the scattering from a larger tissue was developed and investigated. It was found that for the approximation to be accurate, the scattering sub-problems must at minimum extend along the incident field propagation axis for the full depth of the tissue, preserving the scattering that takes place in the direction of propagation. The FDTD method was used to study the scattering effects of multiple inhomogeneous cells on the propagation of a focused Gaussian beam with an application to two-photon imaging. It was found that scattering is mostly responsible for the reduction in two-photon fluorescence signal as depth is increased. It was also determined that for the chosen beam parameters and the cell and organelle configurations used, the nuclei are the dominant scatterers. FDTD was also utilized in an investigation of cellular scattering effects on the propagation of a common depletion beam used in STED microscopy and how scattering impacts the image obtained with a STED microscope. An axial doughnut beam was formulated and implemented in FDTD simulations, along with a corresponding focused Gaussian beam to simulate a fluorescence excitation beam. It was determined that the depletion beam will maintain a well-defined axial null in spite of scattering, although scattering will reduce the resulting fluorescence signal with focal depth. / text
329

Hybrid methods for computational electromagnetics in the frequency domain

Hagdahl, Stefan January 2003 (has links)
<p>In this thesis we study hybrid numerical methods to be usedin computational electromagnetics. We restrict the methods tospectral domain and scattering problems. The hybrids consist ofcombinations of Boundary Element Methods and Geometrical Theoryof Diffraction.</p><p>In the thesis three hybrid methods will be presented. Onemethod has been developped from a theoretical idea to anindustrial code. The two other methods will be presented mainlyfrom a theoretical perspective. We will also give shortintroductions to the Boundary Element Method and theGeometrical Theory of Diffraction from a theoretical andimplementational point of view.</p><p><b>Keywords:</b>Maxwell’s equations, Geometrical Theoryof Diffraction, Boundary Element Method, Hybrid methods,Electromagnetic Scattering</p>
330

A Fast Hybrid Method for Analysis and Design of Photonic Structures

Rohani, Arash January 2006 (has links)
This thesis presents a very efficient hybrid method for analysis and design of optical and passive photonic devices. The main focus is on unbounded wave structures. This class of photonic systems are in general very large in terms of the wavelength of the driving optical sources. The size of the problem space makes the electromagnetic modelling of these structure a very challenging problem. Our approach and main contribution has been to combine or hybridize three methods that together can handle this class of photonic structures as a whole. <br /><br /> The basis of the hybrid method is a novel Gaussian Beam Tracing method GBT. Gaussian Beams (GB) are very suitable elementary functions for tracing and tracking purposes due to their finite extent and the fact that they are good approximations for actual laser beams. The GBT presented in this thesis is based on the principle of phase matching. This method can be used to model the reflection and refraction of Gaussian beams from general curved surfaces as long as the curvature of the surface is relatively small. It can also model wave propagation in free space. The developed GBT is extremely fast as it essentially uses simple algebraic equations to find the parameters of the reflected and refracted beams once the parameters of the incident beam is known. Therefore sections of the systems whose dimensions are large relative to the optical wavelength are simulated by the GBT method. <br /><br /> Fields entering a photonic system may not possess an exact Gaussian profile. For example if an aperture limits the input laser to the system, the field is no longer a GB. In these and other similar cases the field at some aperture plane needs to be expanded into a sum of GBs. Gabor expansion has been used for this purpose. This method allows any form of field distribution on a flat or curved surface to be expanded into a sum of GBs. The resultant GBs are then launched inside the system and tracked by GBT. Calculation of the coefficients of the Gabor series is very fast (1-2 minutes on a typical computer for most applications). <br /><br /> In some cases the dimensions or physical properties of structures do not allow the application of the GBT method. For example if the curvature of a surface is very large (or its radius of curvature is very small) or if the surface contains sharp edges or sub-wavelength dimensions GBT is no longer valid. In these cases we have utilized the Finite Difference Time Domain method (FDTD). FDTD is a rigorous and very accurate full wave electromagnetic solver. The time domain form of Maxwell's equations are discretized and solved. No matrix inversion is needed for this method. If the size of the structure that needs to be analyzed is large relative to the wavelength FDTD can become increasingly time consuming. Nevertheless once a structure is simulated using FDTD for a given input, the output is expanded using Gabor expansion and the resultant beams can then be efficiently propagated through any desired system using GBT. For example if a diffraction grating is illuminated by some source, once the reflection is found using FDTD, it can be propagated very efficiently through any kind of lens or prism (or other optical structures) using GBT. Therefore the overall computational efficiency of the hybrid method is very high compared to other methods.

Page generated in 0.0578 seconds