• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and Characterization of Zwitterion-Containing Acrylic (Block) Copolymers for Emerging Electroactive and Biomedical Applications

Wu, Tianyu 12 October 2012 (has links)
Conventional free radical polymerization of n-butyl acrylate with 3-[[2-(methacryloyloxy)ethyl](dimethyl)-ammonio]-1-propanesulfonate (SBMA) and 2-[butyl(dimethyl)amino]ethyl methacrylate methanesulfonate (BDMAEMA MS), respectively, yielded zwitterionomers and cationomers of comparable chemical structures. Differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and atomic force microscopy (AFM) revealed that zwitterionomers promoted more well-defined microphase-separation than cationic analogs. Dynamic mechanical analyses (DMA) of the copolymers showed a rubbery plateau region due to physical crosslinks between charges for zwitterionomers only. We attributed improved microphase-separation and superior elastomeric performance of the zwitterionomers to stronger association between covalently tethered charged pairs. Zwitterionomer / ionic liquid binary compositions of poly(nBA-co-SBMA) and 1-ethyl-3-methylimidazolium ethylsulfate (EMIm ES) were prepared using both the 'swelling– and the –cast with– methods. Dynamic mechanical analysis revealed that the 'swollen– membranes maintained their thermomechanical performance with up to 18 wt% EMIm ES incorporation, while that of the –cast with– membranes decreased gradually as the ionic liquid concentration in the composite membranes increased. Small-angle X-ray scattering results indicated that the 'swollen– and the –cast with– membranes have different morphologies, with the ionic liquid distributed more evenly inside the –cast with– membranes. Impedance spectroscopy results showed that the –cast with– membranes had better ionic conductivity than the 'swollen– membrane at high ionic liquid concentration, in agreement with our proposed model. The results indicated that the different processing methods had a significant impact on thermomechanical properties, ionic conductivities, as well as morphologies of the zwitterionomer / ionic liquid binary compositions. Reversible addition-fragmentation chain transfer polymerization (RAFT) strategy afforded the synthesis of well-defined poly(sty-b-nBA-b-sty). 2-(Dimethylamino)ethyl acrylate (DMAEA), a tertiary amine-containing acrylic monomer, exhibited radical chain transfer tendency toward itself, which is undesirable in controlled radical polymerization processes. We employed a higher [RAFT] : [Initiator] ratio of 20 : 1 to minimize the impact of the chain transfer reactions and yielded high molecular weight poly[sty-b-(nBA-co-DMAEA)-b-sty] with relatively narrow PDIs. The presence of the tertiary amine functionality, as well as their quaternized derivatives, in the central blocks of the triblock copolymers afforded them tunable polarity toward polar guest molecules, such as ionic liquids. Gravimetric measurements determined the swelling capacity of the triblock copolymers for EMIm TfO, an ionic liquid. DSC and DMA results revealed the impact of the ionic liquid on the thermal and thermomechanical properties of the triblock copolymers, respectively. Composite membranes of DMAEA-derived triblock copolymers and EMIm TfO exhibited desirable plateau moduli of ~ 100 MPa, and were hence fabricated into electromechanical transducers. RAFT synthesized poly(sty-b-nBA-b-sty) triblock copolymer phase separates into long-range ordered morphologies in the solid state due to the incompatibility between the poly(nBA) phases and the poly(sty) phases. The incorporation of DMAEA into the central acrylic blocks enabled subsequent quaternization of the tertiary amines into sulfobetaine functionalities. Both DSC and DMA results suggested that the electrostatic interactions in the low Tg central blocks of poly(sty-b-nBA-b-sty) enhanced block copolymer phase separation. SAXS results indicated that the presence of the sulfobetaine functionalities in acrylate phases increased electron density differences between the phases, and led to better defined scattering profiles. TEM results confirmed that the block copolymers of designed molecular weights exhibited lamellar morphologies, and the lamellar spacing increased with the amount of electrostatic interactions for the zwitterionic triblock copolymers. Acrylic radicals are more susceptible to radical chain transfer than their styrenic and methacrylic counterparts. Controlled radical polymerization processes (e.g. RAFT, ATRP and NMP) mediate the reactivity of the acrylic radical and enable the synthesis of well-defined linear poly(alkyl acrylate)s. However, functional groups such as tertiary amine and imidazole on acrylic monomers interfere with the controlled radical polymerization of functional acrylates. Model CFR and RAFT polymerization of nBA in the presence of triethylamine and N-methyl imidazole revealed the interference of the functional group on the polymerization of acrylate. Various RAFT agents, RAFT agent to initiator ratios, degree of polymerization and monomer feed concentrations were screened with an imidazole-containing acrylate for optimized RAFT polymerization conditions. The results suggest that the controlled radical polymerization of functional acrylates, such as 2-(dimethylamino)ethyl acrylate and 4-((3-(1H-imidazole-1-yl)propanoyl)oxy)-butyl acrylate (ImPBA), remained challenging. / Ph. D.
2

Temperature-compensated silicon-based bulk acoustic resonators

Tabrizian, Roozbeh 12 January 2015 (has links)
Microelectromechanical resonators have found widespread applications in timing, sensing and spectral processing. One of the important performance metrics of MEMS resonators is the temperature sensitivity of their frequency. The main objective of this dissertation is the compensation and control of the temperature sensitivity of silicon resonators through engineering of device geometry and structural composition. This has been accomplished through formation of composite platforms or novel geometries based on dispersion characteristics of guided acoustic waves in single crystalline silicon (SCS) microstructures. Furthermore, another objective of this dissertation is to develop efficient longitudinal piezoelectric transduction for in-plane resonance modes of SCS resonators that have lithographically-defined frequencies, to reduce their motional resistance (Rm). A uniformly distributed matrix of silicon dioxide pillars is embedded inside the silicon substrate to form a homogenous composite silicon-oxide platform (SilOx) with nearly perfect temperature-compensated stiffness moduli. Temperature-stable micro-resonators implemented in SilOx platform operating in any desired in- and out-of-plane resonance modes show full compensation of linear temperature coefficient of frequency (TCF). Overall frequency drifts as small as 80 ppm has been achieved over the industrial temperature range (-40°C to 80°C) showing a 40x improvement compared to uncompensated native silicon resonators. A 27 MHz temperature-compensated MEMS oscillator implemented using SilOx resonator demonstrated sub-ppm instability over the industrial temperature range. Besides this, a new formulation of different resonance modes of SCS resonators based on their constituent acoustic waves is presented in this dissertation. This enables engineering of the acoustic resonator to provide several resonance modes with mechanical energy trapped in central part of the resonator, thus obviating narrow tethers traditionally used for anchoring the cavity to the substrate. This facilitates simultaneous piezoelectric-transduction of multiple modes with different TCFs through independent electrical ports, which can realize highly accurate self-temperature sensing of the device using a beat frequency (fb) generated from linear combination of different modes. Piezoelectrically-transduced multi-port silicon resonators implemented using this technique provide highly temperature-sensitive fb with a large TCF of ~8500 ppm/°C showing 100x improvement compared to other Quartz/MEMS counterparts, suggesting these devices as highly sensitive temperature sensors for environmental sensing and temperature-compensated/oven-controlled crystal oscillator (TCXO/OCXO) applications. Another part of this dissertation introduces a novel longitudinal piezoelectric transduction technique developed for implementation of low Rm silicon resonators operating in lithographically defined in-plane modes. Aluminum nitride films deposited on the sidewalls of thick silicon microstructures provides efficient electromechanical transduction required to achieve low Rm. 100 MHz SCS bulk acoustic resonators implemented using this transduction technique demonstrates Rm of 33Ω showing a 100x improvement compared to electrostatically transduced counterparts. Low-loss narrow-band filters with tunable bandwidth and frequency have been implemented by electrical coupling of these devices, showing their potential for realization of truly reconfigurable and programmable filter arrays required for software-defined radios.
3

Piezoelectric two-layer plate for position stabilization

Krause, Martin, Steinert, Daniel, Starke, Eric, Marschner, Uwe, Pfeifer, Günther, Fischer, Wolf-Joachim 09 October 2019 (has links)
Numerous vibrating electromechanical systems lack a rigid connection to the inertial frame. An artificial inertial frame can be generated by a shaker, which compensates for vibrations. In this article, we present an encapsulated and perforated unimorph bending plate for this purpose. Vibrations can be compensated up to the first eigenfrequency of the system. As basis for an efficient system simulation and optimization, a new three-port multi-domain network model was developed. An extension qualifies the network for the simulation of the acoustical behavior inside the capsule. Network parameters are determined using finite element simulations. The dynamic behavior of the network model agrees with the finite element simulation results up to the first resonance of the system. The network model was verified by measurements on a laboratory setup, too. Furthermore, the network model could be simplified and was applied to determine the influence of various parameters on the stabilization performance of the plate transducer. The performance of the piezoelectric bending plate for position stabilization had been in addition investigated experimentally by measurements on a macroscopic capsule.

Page generated in 0.1611 seconds