• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhanced Field Emission Studies on Nioboim Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

Wang, Tong 13 November 2002 (has links)
Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To address concerns on the effect of natural air drying process on EFE, a comparative study was conducted on Nb and the results showed insignificant difference under the experimental conditions. Nb thin films deposited on Cu present a possible alternative to bulk Nb in superconducting cavities. The EFE performance of a preliminary energetically deposited Nb thin film sample are presented. / Ph. D.
2

ELECTRON FIELD-EMISSION FROM CARBON NANOTUBES FOR NANOMACHINING APPLICATIONS

Sanchez, Jaime A. 01 January 2008 (has links)
The ability to pattern in the nanoscale to drill holes, to draw lines, to make circles, or more complicated shapes that span a few atoms in width is the main driver behind current efforts in the rapidly growing area of nanomanufacturing. In applications ranging from the microprocessor industry to biomedical science, there is a constant need to develop new tools and processes that enable the shrinking of devices. For this and more applications, nanomanufacturing using electron beams offers a window of opportunity as a top-down approach since electrons, unlike light, have a wavelength that is in the order of the atomic distance. Though the technology based on electron beams has been available for more than twenty years, new concepts are constantly being explored and developed based on fundamental approaches. As such, a tool that utilizes electron field-emission from carbon nanotubes was proposed to accomplish such feats. A full numerical analysis of electron field-emission from carbon nanotubes for nanomachining applications is presented. The different aspects that govern the process of electron field-emission from carbon nanotubes using the finite element method are analyzed. Extensive modeling is carried here to determine what the effect of different carbon nanotube geometries have on their emission profiles, what energy transport processes they are subject to, and establish what the potential experimental parameters are for nanomachining. This dissertation builds on previous efforts based on Monte Carlo simulations to determine electron deposition profiles inside metals, but takes them to next level by considering realistic emission scenarios. A hybrid numerical approach is used that combines the two-temperature model with Molecular Dynamics to study phase change and material removal in depth. The use of this method, allows the determination of the relationship between the amount of energy required to remove a given number of atoms from a metallic workpiece and the number of carbon nanotubes and their required settings in order to achieve nanomachining. Finally, the grounds for future work in this area are provided, including the need for novel electron focusing systems, as well as the extension of the hybrid numerical approach to study different materials.
3

A PRECISION INSTRUMENT FOR RESEARCH INTO NANOLITHOGRAPHIC TECHNIQUES USING FIELD-EMITTED ELECTRON BEAMS

Hii, King-Fu 01 January 2008 (has links)
Nanomanufacturing is an active research area in academia and industry due to the ever-growing demands for precision surface modifications of thin films or substrates with nanoscale features. Conventional lithographic techniques face many challenges as they approach their fundamental limits. Consequently, new nanomanufacturing tools, fabrication techniques, and precision instruments are being explored and developed to meet these challenges. It has been hypothesized that direct-write nanolithography might be achieved by using a field-emitted electron beam for nanomachining. This dissertation moves this research one step closer by developing a precision instrument that can enable the integration of direct-write nanolithography by a field-emitted electron beam with dimensional metrology by scanning tunneling microscopy. First, field emission from two prospective electron sources, a carbon nanotube field emitter and a sharp tungsten field emitter, is characterized at distances ranging from sub-micrometer to a few micrometers. Also, the design and construction of a low thermal drift piezoelectric linear motor is described for tip-sample approach. Experiments indicate that: the step size is highly repeatable with a standard deviation of less than 1.2 nm and the thermal stability is better than 40 nm/◦C. Finally, the design and construction of the instrument are presented. Experiments indicate that: the instrument is operating properly in scanning tunneling microscope mode with a resolution of less than 2 Å.
4

Synthesis and Electron Emission Properties of Aligned Carbon Nanotube Arrays

Neupane, Suman 04 February 2014 (has links)
Carbon nanotubes (CNTs) have become one of the most interesting allotropes of carbon due to their intriguing mechanical, electrical, thermal and optical properties. The synthesis and electron emission properties of CNT arrays have been investigated in this work. Vertically aligned CNTs of different densities were synthesized on copper substrate with catalyst dots patterned by nanosphere lithography. The CNTs synthesized with catalyst dots patterned by spheres of 500 nm diameter exhibited the best electron emission properties with the lowest turn-on/threshold electric fields and the highest field enhancement factor. Furthermore, CNTs were treated with NH3 plasma for various durations and the optimum enhancement was obtained for a plasma treatment of 1.0 min. CNT point emitters were also synthesized on a flat-tip or a sharp-tip to understand the effect of emitter geometry on the electron emission. The experimental results show that electron emission can be enhanced by decreasing the screening effect of the electric field by neighboring CNTs. In another part of the dissertation, vertically aligned CNTs were synthesized on stainless steel (SS) substrates with and without chemical etching or catalyst deposition. The density and length of CNTs were determined by synthesis time. For a prolonged growth time, the catalyst activity terminated and the plasma started etching CNTs destructively. CNTs with uniform diameter and length were synthesized on SS substrates subjected to chemical etching for a period of 40 minutes before the growth. The direct contact of CNTs with stainless steel allowed for the better field emission performance of CNTs synthesized on pristine SS as compared to the CNTs synthesized on Ni/Cr coated SS. Finally, fabrication of large arrays of free-standing vertically aligned CNT/SnO2 core-shell structures was explored by using a simple wet-chemical route. The structure of the SnO2 nanoparticles was studied by X-ray diffraction and electron microscopy. Transmission electron microscopy reveals that a uniform layer of SnO2 is conformally coated on every tapered CNT. The strong adhesion of CNTs with SS guaranteed the formation of the core-shell structures of CNTs with SnO2 or other metal oxides, which are expected to have applications in chemical sensors and lithium ion batteries.
5

Desenvolvimento de um sistema de caracterização de emissores de elétrons baseado no mapeamento de corrente por imagem. / Development of an electron emitter characterization system based on image current mapping.

Kopelvski, Maycon Max 25 September 2018 (has links)
Dispositivos de emissão de elétrons por efeito de campo elétrico (FE - Field Emission Devices) têm sido propostos para aplicações como fontes eficientes de elétrons em nanolitografia, microscopia eletrônica, sensores microeletrônicos de vácuo, entre outras. Atualmente os sistemas tradicionais utilizados para caracterização de dispositivos FE fornecem apenas o comportamento geral da emissão de elétrons, ou seja, não permitem efetuar uma investigação mais seletiva e precisa dos centros emissores que constituem o dispositivo, durante seu funcionamento como dispositivo. Frente a esta lacuna, este trabalho propõe o desenvolvimento de um sistema de caracterização de dispositivos emissores de elétrons através do processamento de imagens integrado ao tradicional levantamento da característica corrente-tensão (I-V) do dispositivo. Tais imagens são obtidas através do impacto dos elétrons em uma tela fosforescente. A plataforma LabVIEW foi aplicada para o desenvolvimento do algoritmo de processamento dos sinais, que incorpora desde a etapa de aquisição dos dados (ou seja, medições realizadas pelos instrumentos) até a apresentação dos resultados em diferentes formatos (imagem ou representações gráficas), à escolha do usuário. O sistema desenvolvido permitiu avaliar, quantificar e identificar a distribuição da corrente de emissão em distintas regiões de interesse de amostras compostas por microestruturas ou filmes emissores de elétrons, resultando em representações gráficas bi e tridimensionais. Complementarmente, o sistema também permitiu comparar o desempenho dos dispositivos de emissão de elétrons por efeito de campo elétrico e estudar os efeitos físicos relacionados ao impacto dos elétrons em diferentes tipos de telas fosforescentes. Esta proposta resultou em uma ferramenta inovadora para análise de emissão de elétrons, com a vantagem de manter o dispositivo dentro do seu ambiente de operação, em alto vácuo, representando um grande avanço na metodologia aplicada para se obter características operacionais de dispositivos FE e proporcionando uma caracterização com qualidade superior, visto que proporcionou uma avaliação localizada dos centros emissores numa dada matriz. / Field emission devices (FE devices) have been proposed as efficient sources of electrons for applications in nanolithography, electron microscopy, microelectronic vacuum sensors, among others. Nowadays, the traditional FE characterization systems provide only information related to the general behavior of the electron emission, that is, they do not have specific tools to execute more selective and precise investigation of the emitting centers during their operation as device. As an alternative, this work proposes the development of a dedicated system for characterization of FE by integrating image processing with the traditional current-voltage (I-V) characteristics of the devices. Such images are obtained by the impact of electrons on a phosphorescent screen. The LabVIEW platform was applied to develop the algorithm of signal processing. This algorithm processes information from the data acquisition stage (instruments measurements) to the presentation of the results in different ways (image or graphical representation), according to the researcher´s choices. The developed system allowed evaluating, quantifying and identifying the emission current distribution in different regions of interest of samples composed by microstructures or thin emitting electron films, whose results could be represented in two and threedimensional graphics. Additionally, the system also allowed comparing the performance of electron emission devices by electrical field effect and studying physical effects related to the impact of electrons in different types of phosphorescent screens. This proposal resulted in an innovative tool for electron emission analysis, with the advantage of keeping the device inside its high vacuum characterization environment, which represents a significant advance in the methodology applied to obtain operational characteristics of FE devices and to provide a characterization with superior quality, since it provided a localized evaluation of the emitting centers in a given matrix.
6

Desenvolvimento de um sistema de caracterização de emissores de elétrons baseado no mapeamento de corrente por imagem. / Development of an electron emitter characterization system based on image current mapping.

Maycon Max Kopelvski 25 September 2018 (has links)
Dispositivos de emissão de elétrons por efeito de campo elétrico (FE - Field Emission Devices) têm sido propostos para aplicações como fontes eficientes de elétrons em nanolitografia, microscopia eletrônica, sensores microeletrônicos de vácuo, entre outras. Atualmente os sistemas tradicionais utilizados para caracterização de dispositivos FE fornecem apenas o comportamento geral da emissão de elétrons, ou seja, não permitem efetuar uma investigação mais seletiva e precisa dos centros emissores que constituem o dispositivo, durante seu funcionamento como dispositivo. Frente a esta lacuna, este trabalho propõe o desenvolvimento de um sistema de caracterização de dispositivos emissores de elétrons através do processamento de imagens integrado ao tradicional levantamento da característica corrente-tensão (I-V) do dispositivo. Tais imagens são obtidas através do impacto dos elétrons em uma tela fosforescente. A plataforma LabVIEW foi aplicada para o desenvolvimento do algoritmo de processamento dos sinais, que incorpora desde a etapa de aquisição dos dados (ou seja, medições realizadas pelos instrumentos) até a apresentação dos resultados em diferentes formatos (imagem ou representações gráficas), à escolha do usuário. O sistema desenvolvido permitiu avaliar, quantificar e identificar a distribuição da corrente de emissão em distintas regiões de interesse de amostras compostas por microestruturas ou filmes emissores de elétrons, resultando em representações gráficas bi e tridimensionais. Complementarmente, o sistema também permitiu comparar o desempenho dos dispositivos de emissão de elétrons por efeito de campo elétrico e estudar os efeitos físicos relacionados ao impacto dos elétrons em diferentes tipos de telas fosforescentes. Esta proposta resultou em uma ferramenta inovadora para análise de emissão de elétrons, com a vantagem de manter o dispositivo dentro do seu ambiente de operação, em alto vácuo, representando um grande avanço na metodologia aplicada para se obter características operacionais de dispositivos FE e proporcionando uma caracterização com qualidade superior, visto que proporcionou uma avaliação localizada dos centros emissores numa dada matriz. / Field emission devices (FE devices) have been proposed as efficient sources of electrons for applications in nanolithography, electron microscopy, microelectronic vacuum sensors, among others. Nowadays, the traditional FE characterization systems provide only information related to the general behavior of the electron emission, that is, they do not have specific tools to execute more selective and precise investigation of the emitting centers during their operation as device. As an alternative, this work proposes the development of a dedicated system for characterization of FE by integrating image processing with the traditional current-voltage (I-V) characteristics of the devices. Such images are obtained by the impact of electrons on a phosphorescent screen. The LabVIEW platform was applied to develop the algorithm of signal processing. This algorithm processes information from the data acquisition stage (instruments measurements) to the presentation of the results in different ways (image or graphical representation), according to the researcher´s choices. The developed system allowed evaluating, quantifying and identifying the emission current distribution in different regions of interest of samples composed by microstructures or thin emitting electron films, whose results could be represented in two and threedimensional graphics. Additionally, the system also allowed comparing the performance of electron emission devices by electrical field effect and studying physical effects related to the impact of electrons in different types of phosphorescent screens. This proposal resulted in an innovative tool for electron emission analysis, with the advantage of keeping the device inside its high vacuum characterization environment, which represents a significant advance in the methodology applied to obtain operational characteristics of FE devices and to provide a characterization with superior quality, since it provided a localized evaluation of the emitting centers in a given matrix.
7

Electron Filed Emission Studies of Nanostructured Carbon Materials

Ivaturi, Sameera January 2012 (has links) (PDF)
Field emission is the emission of electrons from a solid under an intense electric field, of the order of 109 V/m. Emission occurs by the quantum mechanical tunneling of electrons through a potential barrier to vacuum. Field emission sources offer several attractive features such as instantaneous response to field variation, resistance to temperature fluctuation and radiation, a high degree of focusing ability in electron optics, good on/off ratio, ballistic transport, and a nonlinear current-voltage relationship. Carbon nanotubes (CNTs) are potential candidates as field emitters since they possess high aspect ratio and are chemically inert to poisoning, and physically inert to sputtering during field emission. They can carry a very high current density and do not suffer field-induced tip sharpening like metallic tips. In addition, the CNT field emitters have the advantage of charge transport through 1D channels and electron emission at the sharp tips due to large enhancement. But the injection of electrons from the back contact remains a technical challenge which requires binding of CNT emitters to metallic substrate. Also, detachment of the CNT from the substrate tends to occur with time. The electrically conducting mixtures of CNTs and polymer can provide an alternative route to address these issues in the field emission of CNTs. The composites can be casted on any substrate in desired shape and the polymer matrix provides necessary support. The research work reported in this thesis includes the preparation of high quality multiwall carbon nanotubes (MWCNTs), MWCNT-polystyrene (PS) composites, and experimental investigation on field emission properties of MWCNT¬PS composites in two different configurations. Electrical conductivity and percolation threshold of the MWCNT-PS composites are also investigated to ensure their high quality prior to the field emission studies. The study has been further extended to reduced graphene oxide (rGO) coated on polymer substrate. The main results obtained in present work are briefly summarized below. This thesis contains eight chapters. Chapter 1 provides an overview of basics of field emission, and the potential of CNT and CNT-polymer composites as field emitters. Chapter 2 deals with the concise introduction of various structural characterization tools and experimental techniques employed in this study. Chapter 3 describes the synthesis of MWCNTs and characterization by using electron microscopy and Raman spectroscopy. MWCNTs are synthesized by chemical vapor deposition (CVD) of toluene [(C6H5) CH3] and ferrocene [(C5H5)2 Fe] mixture at 980 °C. Here toluene acts as carbon source material and ferrocene provides catalytic iron (Fe) particles. The MWCNT formation is based on the thermal decomposition of the precursor mixture. Scanning electron microscopy (SEM) characterization shows that the MWCNTs are closely packed and quite aligned in one direction. The average length of MWCNTs is about 200 μm and outer diameter lies in the range of 50-80 nm. The high quality of as-prepared MWCNT sample is confirmed by Raman spectroscopy. The as-grown MWCNTs are encapsulated with catalytic Fe nanoparticles, revealed by transmission electron microscopy. The Fe nanoparticles trapped within the MWCNT serve as fantastic system for studying the magnetic properties. Three types of MWCNT samples filled with Fe nanoparticles of different aspect ratio (~10, 5 and 2) are synthesized by varying the amount of ferrocene in the precursor material, and their magnetic properties are investigated. Enhanced values of coercivity (Hc) are observed for all samples, Hc being maximum (~2.6 kOe) at 10 K. The enhancement in Hc values is attributed to the strong shape anisotropy of Fe nanoparticles and significant dipolar interactions between Fe nanoparticles. Chapter 4 deals with the field emission studies of MWCNT-PS composites in the parallel configuration. By incorporating as-prepared MWCNTs in PS matrix in a specific ratio, composites with varying loading from 0.01-0.45 weight (wt.) fraction are prepared using solution mixing and casting. High degree of dispersion of MWCNTs in PS matrix without employing any surfactant is achieved by ultrasonication. Low percolation threshold (~0.0025 wt. fraction) in the MWCNT-PS composites ensures the good connectivity of filler in the fabricated samples. Field emission of MWCNT¬PS composites is studied in two different configurations: along the top surface of the film (parallel configuration) and along the cross section of the sample (perpendicular configuration). In this chapter field emission results of the MWCNT-PS composites in parallel configuration are presented. The effect of charge transport in limiting the field emission of MWCNT-PS composite is discussed. Field emission results of MWCNT-PS composites in parallel configuration indicate that the emission performance can be maximized at moderate wt. fraction of MWCNT (0.15). The obtained current densities are ~10 µA/cm2 in the parallel configuration. Chapter 5 presents the study of field emission characteristics of MWCNT¬PS composites of various wt. fractions in the perpendicular configuration. Till date most studies using nanotube composites tend to have the nanotubes lying in two dimensional plane, perpendicular to the applied electric field. In the perpendicular configuration, the nanotubes are nearly aligned parallel to the direction of the applied electric field which results in high field enhancement, and electron emission at lower applied fields. SEM micrographs in cross-sectional view reveal that MWCNTs are homogeneously distributed across the thickness and the density of protruding tubes can be scaled with wt. fraction of the composite film. Field emission from composites has been observed to vary considerably with density of MWCNTs in the polymer matrix. High emission current density of 100 mA/cm2 is achieved at a field of 2.2 V/µm for 0.15 wt. fraction. The field emission is observed to follow the Fowler– Nordheim tunneling mechanism, however, electrostatic screening plays a role in limiting the current density at higher wt. fractions. Chapter 6 highlights the field emission response of rGO coated on a flexible PS film. Field emission of rGO coated PS film along the cross section of the sample is studied in addition to the top film surface of the film. The effect of geometry on the improved field emission efficiency of rGO coated polymer film is demonstrated. The emission characteristics are analyzed by Fowler–Nordheim tunneling for field emission. Low turn-on field (~0.6 V/µm) and high emission current (~200 mA/cm2) in the perpendicular configuration ensure that rGO can be a potential field emitter. Furthermore, stability and repeatability of the field emission characteristics are also presented. Chapter 7 deals with the synthesis, characterization, and field emission of two different kinds of hybrid materials: (1) MWCNT coated with zinc oxide (ZnO) nanoparticles (2) ZnO/graphitic carbon (g-C) core-shell nanowires. The field emission from the bucky paper is improved by anchoring ZnO nanoparticles on the surface of MWCNT. A shift in turn on field from 3.5 V/µm (bucky paper) to 1.0 V/µm is observed by increasing the ZnO nanoparticle loading on the surface of MWCNT with an increase in enhancement factor from 1921 to 4894. Field emission properties of a new type of field emitter ZnO/g-C core-shell nanowires are also presented in this chapter. ZnO/g-C core/shell nanowires are synthesized by CVD of zinc acetate at 1300 °C. Overcoming the problems of ZnO nanowire field emitters, which in general possess high turn on fields and low current densities, the core-shell nanowires exhibit excellent field emission performance with low turn on field of 2.75 V/µm and high current density of 1 mA/cm2. Chapter 8 presents a brief summary of the important results and future perspectives of the work reported in the thesis.

Page generated in 0.5492 seconds