1 |
Scanning force microscopy of poly(ethylene terephthalate) filmLing, John S. G. January 1998 (has links)
No description available.
|
2 |
A new individual-based modelling framework for bacterial biofilm growth applied to cold plasma treatmentLo, Yi-Ping January 2013 (has links)
Biofilms are colonies of bacteria attached to the surface at a solid-fluid interface. Bacteria in biofilm produce exopolysaccharides (EPS) that form a gel-like matrix in which the bacteria are embedded. Biofilms have numerous consequences in industrial and medical settings, both positive (bioreactors, digestion) and negative (blocking, as corrosive damage of materials/devices, food contamination, clinical infection). The use of antibiotics or mechanical clearing can be effective at removing biofilms, but such treatments are not always effective or appropriate in all situations. Recently, non-thermal atmospheric plasma treatments have been proposed as an alternative (or complementary) form of treatment, that can target sites of infection with minimal damage to the surroundings (e.g. host cells in a clinical setting). These plasmas generate a multitude of chemical species, most of which are very short lived, that can infiltrate and diffuse into the biofilm killing the bacteria within. The aim of this thesis is to develop a multi-dimensional mathematical model to investigate the effect of a non- thermal plasma on biofilms in time and space and to identify key factors that determine effectiveness of the treatment. Most of the chemical products of cold plasmas are too short lived, or too reactive, to be effective in killing the biofilms, it is the longer live species, e.g. ozone, hydrogen peroxide, acid species, that penetrated the biofilm and do the most damage. However, the EPS in biofilms is an effective barrier against ozone and hydrogen peroxide. No published biofilm model combines multi-dimensional growth with a detailed description of EPS production, hence a new mathematical model is developed and applied to simulating plasma treatment. The thesis is split broadly into two parts. The first part presents a new biofilm model framework that simulates growth in response to any number of substrates (e.g. nutrient, oxygen). The model combines an Individual based model (IbM) description of bacteria (individuals or clusters) and substrates are described as a continuum. Novel features of the framework are the assumption that EPS forms a continuum over the domain and the explicit consideration of cellular energy (ATP). Simulations of this model demonstrate the contrast between biofilm grown with topical nutrient sources (forming irregular, bumpy biofilm) and basal nutrient source with topical oxygen such as biofilm grown on agar (forming regular spatially uniform biofilms). The former is in broad agreement with experiments whilst the latter, to our knowledge, has been the subject of very little experimental study. The second part extends the modelling framework to consider the effect of the plasma species. The simulations demonstrate that penetration is a key factor in their effectiveness, for which EPS plays a key role in preventing spread within and beyond the plasma treated zone. The simulations provide estimates of the timescale of equilibration of the main plasma species, predict the effect of combining these species and demonstrate how the constituents of the biofilm can change following treatment. A number of recommended suggestions for future theoretical and experimental study are discussed in the conclusions.
|
3 |
Chemical and Geometric Transformations of MoS2/WS2 Heterostructures by Plasma TreatmentJanuary 2019 (has links)
abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDCs) like molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are effective components in optoelectronic devices due to their tunable and attractive electric, optical and chemical properties. Combining different 2D TMDCs into either vertical or lateral heterostructures has been pursued to achieve new optical and electronic properties. Chemical treatments have also been pursued to effectively tune the properties of 2D TMDCs. Among many chemical routes that have been studied, plasma treatment is notable for being rapid and versatile. In Wang’s group earlier work, plasma treatment of MoS2 and WS2 resulted in the formation of MoO3 and WO3 nanosheets and nanoscrolls. However, plasma treatment of 2D TMDC heterostructures have not been widely studied. In this dissertation, MoS2/WS2 vertical and lateral heterostructures were grown and treated with air plasma. The result showed that the vertical heterostructure and lateral heterostructures behaved differently. For the vertical heterostructures, the top WS2 layer acts as a shield for the underlying MoS2 monolayer from oxidizing and forming transition metal oxide nanoscrolls, as shown by Raman spectroscopy and atomic force microscopy (AFM). On the contrary, for the lateral heterostructures, the WS2 that was grown surrounding the MoS2 triangular core served as a tight frame to stop the propagation of the oxidized MoS2, resulting a gradient of crack distribution. These findings provide insight into how plasma treatment can affect the formation of oxide in heterostructure, which can have further application in nanoelectronic devices and electrocatalysts. / Dissertation/Thesis / Masters Thesis Materials Science and Engineering 2019
|
4 |
Nitrogen and argon treatment of titanium dioxide nanowire arraysCupido, Ian Patrick January 2021 (has links)
>Magister Scientiae - MSc / TiO2 nanoparticle films are important electron transport layers (ETLs) in photovoltaics such as dye-sensitised, perovskite and polymer hetero-junction solar cells. These films, however, have significant electron trap-sites as a result of the large density of oxygen vacancies present in nano-sized TiO2. These trap-sites cause electron-hole recombination and ultimately lower photon-to-current conversion efficiency of the underlying cell during operation. Doping the TiO2 lattice with low atomic number elements such as nitrogen is a proven method to overcoming the charge transport inefficiency of TiO2 ETLs; another is the use of one-dimensional (1D) nanowires (NWs), instead of nanoparticles.
|
5 |
Treatment of Stormwater Pond Sediment by Thermal Plasma SystemsLi, Oi 04 1900 (has links)
<p> This thesis focuses on the thermal plasma treatment of non-point source
pollutants accumulating in stormwater ponds. Stormwater ponds are constructed
as a part of urban non-point source pollution control systems. Pollutants from
various sources are collected in the stormwater ponds as sediments. In this work,
stormwater sediments were first separated by a filter with an opening of 208μm.
The filtered sludge-water was subjected to pulsed arc electrohydraulic discharge
(PAED) treatment while the solid part (i.e., wet sludge and dried PAED treated
sludge) was subjected to thermal plasma treatment under non-DC transferred and
partial transferred operation modes. The results from the PAED sludge-water
treatment show that the reduction of TOC in sludge-water was approximately
80% and was greater than 90%, respectively, after 5 minutes and 2 hours of
PAED treatment. The accumulated gaseous concentrations of CxHy, CO, C02,
S02, H2S and NO emission from sludge-water treatment were 8.2, 3.1, 1.9, 0.32,
0.29 and 0.07 mg/L, respectively, after 2 hours of PAED treatment. The
concentrations of volatile elements in sediments such as S, Br, Cl and K decreased
approximately 80, 90, 30 and 20% respectively. The solid-phase carbon was
observed to be approximately completely removed after treatment. Based on the
above results, it can be concluded that PAED successfully degraded organic
compounds into C02, CO and CxHy, and converted sulfur and nitrate compounds
into S02, HzS and NO. </p> <p> Thermal plasma wet-sludge treatments showed that a reduction of TOC
was approximately 52% with argon plasma gas and air flow rates (in the reaction
zone) of 24 and 2.4 L/min, respectively. Based on SEM images, wet sludge was
melted under partial transferred mode. Thirteen elements with concentration
relationships of 0 > Si > Al > Ca > S >Fe> K > Mg > Na > Cu > C > Ti > Cl
were quantified by the X-ray energy dispersion technique. The elemental weight
percentages of Si, K, Fe and 0 increased with increasing reaction zone air flow
rate, while Ca and Cu decreased with increasing air flow rate. Thirty two elements
were quantified by Neutron Activation Analyses (NAA) but only 27 elements
were above the detection limits. Major elements (concentration> 1000 ppm) with
relative concentrations of Ca > Al >Fe> K > Mg > Na > Ti > Cl; minor elements
(100 - 1000 ppm) with relative concentrations of Mn > Ba > Sr > Zn; and trace
elements(< 100 ppm) with relative concentration were Mo > V > Cr > Br >La>
As > Sc > Th> As > Co > Dy > W > Sb > Eu; were determined. Concentrations of
Zn, La and Co were enriched 90, 50 and 30% on average respectively, while
concentrations of Br, W and As decreased by 80, 50 and 20% on average
respectively. The chemical compositions in sludge were quite different after
thermal plasma treatment. The average percentages of sand (Si02) and calcite
(CaC03) decreased 35 and 10% respectively, while compounds such as KAlSi08,
Fe304, NaCl and CaS04 were formed after thermal plasma treatment. Gaseous
hydrocarbons, H2S, CO and NO were emitted continuously during the thermal
plasma treatment of sludge. Higher reduction of organics and sulfur compounds and suppression of NOx formation were observed in the thermal plasma treatment
of wet sludge. The integrated system consisting of PAED sludge-water treatment
and thermal plasma wet sludge treatment under partial transferred mode may
provide a potential for stormwater pond sediment treatment control. </p> / Thesis / Doctor of Philosophy (PhD)
|
6 |
LONG-TERM STABILITY OF PLASMA OXIDIZED POLYDIMETHYLSILOXANE SURFACESKIM, BONGSU January 2004 (has links)
No description available.
|
7 |
An Investigation of Pore Collapse in Asymmetric Polysulfone MembranesSubrahmanyan, Sumitra 12 September 2003 (has links)
Porous polysulfone membranes prepared by phase inversion can be tailored to suit filtration requirements by the choice of solvent and coagulant. In the current research polysulfone membranes were prepared by inverting a solution in N-methyl pyrrolidinone (NMP) in isopropanol to form uniform sized pores. Phase inversion resulted in the formation of an asymmetric membrane. The membranes have a characteristic "skin" which is supported by a highly porous substructure. Water-wet membranes experience capillary force during water evaporation. Since the modulus of the membranes is lower than the capillary force, the membrane walls shrink and thicken giving rise to a condensed structure.
The "skin" regulates permeation through the membranes which is essential for filtration. A change in the pore structure of the skin alters the permeability. The current research investigates the influence of amine plasma treatments on the surface pore structure of polysulfone membranes. The permeation of a rhodamine dye through the plasma treated membranes and through non-plasma treated membranes is used to examine the influence of the plasma treatment. Furthermore, the influence of plasma treatment on the loss of water from the membranes leading to pore collapse is also explored.
The study revealed that a plasma ablates the skin, increasing the permeation. An ammonia plasma treatment produced more etching, and hence increased permeation compared to permeation for an aniline plasma-treated membrane. A one-minute aniline plasma treatment only caused a moderate increase in permeation. Plasma treatments introduced significant surface modification by the introduction of new functionalities. However, permeation was not influenced by the surface modification.
Water trapped in the pores is essential to maintain the pore structure of the membrane. The surface treatment dictates the pore size and therefore, the convection allowing water evaporation, leading to pore collapse. Heat treating also increases the rate of water removal. Using thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) the role of heat and surface treatments on the extent of pore collapse was investigated. The ammonia plasma treated samples showed maximum water loss and the control samples showed a minimum loss of water when stored at room temperature. All the samples stored at 90 °C exhibited equivalent water loss. Water loss was not affected by the plasma treatments. / Ph. D.
|
8 |
Síntese e passivação de nanofios de óxido de zincoMenezes, Eduardo Serralta Hurtado de January 2017 (has links)
Neste trabalho se realiza a síntese e caracterização de nanofios de óxido de zinco. Adicionalmente se apresenta o processo de montagem de um dispositivo para medidas elétricas deste material. Estuda-se complementarmente o efeito do tratamento de plasma sobre as propriedades de fotoluminescência do material. Nanofios foram sintetizados pelo mecanismo vapor-líquido-sólido (VLS), utilizando ouro como catalizador e safira c-plane como substrato. As amostras foram caracterizadas utilizando microscopia eletrônica de varredura, fotoluminescência a temperatura ambiente, difração de raios X, e microscopia eletrônica de transmissão. Os nanofios obtidos têm seção transversal com formato quase hexagonal, e larguras de aproximadamente 46 nm. O comprimento deles varia de 3 a 10 μm. Os resultados de difração de raios x e microscopia eletrônica de transmissão mostram que eles são monocristalinos com rede cristalina tipo wurtzita, e com direção de crescimento no eixo c. Foram estudados os efeitos da potência de plasma de oxigênio (O2) na fotoluminescência dos nanofios a temperatura ambiente. A diferença na fotoluminescência após diferentes tratamentos de plasma de O2 mostra que a razão entre a emissão da região do band gap e da banda do visível pode ser modificada pelo tratamento. Este efeito corrobora com a hipótese de que a banda verde de luminescência está relacionada às vacâncias de zinco. A variação percentual da razão entre as duas regiões apresenta uma dependência linear com a potência do plasma. / In this work, we performed the synthesis and characterization of zinc oxide nanowires. We also report an assembly process to measure the electrical properties of this material. We study the plasma treatment effect on the photoluminescence spectra of the nanowires. Nanowires were synthesized via vapor-liquid-solid mechanism, using gold as catalyst and c-plane sapphire as substrate. The samples were characterized using scanning electron microscopy, room temperature photoluminescence, x-rays diffraction and transmission electron microscopy. Our nanowires show a quasi-hexagonal cross section, with diameters of approximately 46 nm. Their lengths ranged from 3 to 10 μm. Our results show monocrystalline wurtzite crystal nanowires with c growth direction. We also study the plasma power effect of oxygen (O2) plasma treatment on the room temperature photoluminescence spectra of the nanowires. Our results show that the deep level emission to near band emission ratio decreases with the plasma treatment. This effect supports the hypothesis that claims the green band luminescence is related to the oxygen vacancies. Furthermore, the relative ratio change depends linearly on the plasma power.
|
9 |
Assemblages composites-polymères après traitement par plasma atmosphérique du composite : caractérisation mécaniques et modélisation / Composite-polymer assemblies after amospheric plasma treatment on composite surface : mechanical characterization and modelingPhongphinittana, Ekkarin 16 December 2014 (has links)
A la suite des propositions de la commission européenne, visant à concrétiser les objectifs de réduction des émissions de dioxyde de carbone (CO2) des voitures. Pour atteindre cet objectif, les constructeurs automobiles doivent réduire le poids de la voiture. Ainsi l'équipementier FAURECIA, fabricant de sièges de voiture désire remplacer les structures métalliques par des structures hybrides plastique-métal (PMH). Et en plus, il désire également utiliser un matériau composite en remplacement du métal pour diminuer le poids et utiliser la technique du plasma atmosphérique pour améliore le force d'adhérence à l'interface de pièce structure hybride.C'est dans ce contexte que nous avons étudié des effets de plasma traitement sur l'adhérence dans la structure hybride pour proposer la meilleure condition de traitement. L'objectif de ce travail était de caractériser l'effet de plasma traitement par détermination des paramètres dans le processus de traitement telle que la vitesse de balayage, la distance entre le substrat et la torche plasma et le nombre de passages de la torche, puis de prédire l'initiation du délaminage sous chargement quasi-statiques dans l'éprouvette de simple recouvrement par l'utilisation le critère de la rupture. Un autre objectif était d'étudier les modèle micromécanique pour évaluer la fiabilité de leur. Et ils seront appliqués pour prévoir les comportements mécaniques de matériau thermoplastique renforcé par fibre de verre court. Afin d'atteindre les objectifs présenté, les plusieurs essais telles que l'essai de traction, l'essai simple recouvrement et l'essai de l'ARCAN-Mines sont été réalisé. En parallèle, les techniques de l'émission acoustique (EA), du rayonnement infrarouge (RI) et de la microscopie optique ont été utilisées pour suivre les mécanismes de la rupture de l'éprouvette étudiée. En enfin, la méthode des éléments finis a été utilisé pour simuler les essais et pour permettre de vérifier la fiabilité du critère de rupture. / Following the proposals of the European Commission, to achieve the goals of emission reduction of carbon dioxide (CO2) from cars. To achieve this objective, automakers must reduce the weight of the car. Thus the supplier Faurecia, manufacturer of car seats desires to replace metal structures by structure plastic-metal hybrid (PMH). And they desire also to use a composite material to replace metal in order to reduce weight. Moreover in order to improve the adhesion strength at the interface piece hybrid structure,Atmospheric plasma technique was used.In this context, we studied the effects of plasma treatment on term of adhesion in the hybrid structure in order to provide the best condition of treatment. The objective of this study was to characterize the effect of plasma treatment by determination at the parameters in the process such as the scanning speed, the distance between the substrate and the plasma torch and the number of passes of the torch, then to predict the initiation of delamination under quasi-static loading test in specimen of single lap shear by using the criterion of rupture. The other objective was to study the micromechanical model to assess the reliability of them. And they will be applied to predict the mechanical behavior of Short Glass Fiber reinforced thermoplastic. In order to achieve the objectives presented, the several tests such as tensile test, single lap shear test and ARCAN-Mines test have been executed. In parallel, techniques acoustic emission (AE), infrared radiation (IR) and optical microscopy were used in order to follow the failure mechanisms of the specimen studied. Finally, the finite element method was used to simulate the tests and allow to verify the reliability of the failure criterion.
|
10 |
Estudo das propriedades do elastômero termoplástico de copoliéster tratado a plasma / Study of the properties of polyester thermoplastic elastomer treated by plasmaResende, Renato Carvalho [UNESP] 06 March 2017 (has links)
Submitted by RENATO CARVALHO RESENDE (htc.renato@gmail.com) on 2017-03-30T23:23:31Z
No. of bitstreams: 1
Dissertação Mestrado Renato Carvalho Resende.pdf: 9175175 bytes, checksum: 3d504c6ae855f8c5ee734700afd5a7cc (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2017-04-06T14:17:14Z (GMT) No. of bitstreams: 1
resende_rc_me_bauru.pdf: 9175175 bytes, checksum: 3d504c6ae855f8c5ee734700afd5a7cc (MD5) / Made available in DSpace on 2017-04-06T14:17:14Z (GMT). No. of bitstreams: 1
resende_rc_me_bauru.pdf: 9175175 bytes, checksum: 3d504c6ae855f8c5ee734700afd5a7cc (MD5)
Previous issue date: 2017-03-06 / Os elastômeros termoplásticos (TPE) têm sido bastante empregados em substituição às borrachas tradicionais, por terem custo reduzido de matéria prima, facilidade no processamento e serem recicláveis. Apresentam propriedades mecânicas semelhantes, porém quando utilizados em componentes de vedação apresentam limitada resistência à corrosão em água clorada. Assim, o desenvolvimento de tratamento superficial que não modifique as características originais, mas tornem o material mais resistente são desejáveis. Para tanto, este trabalho pretende desenvolver uma metodologia a plasma para melhorar esse quesito. O elastômero termoplástico de copoliéster (COPE) foi escolhido por ser o mais empregado em componentes de vedação. O tratamento a plasma de baixa pressão com hexafluoreto de enxofre (SF6) foi empregado visando tornar a superfície do COPE hidrofóbica através da incorporação de grupos fluorados. A implantação iônica por imersão em plasmas (IIIP) de argônio foi utilizada para criar uma camada superficial mais coesa e entrelaçada, além da possibilidade de torná-la hidrofóbica após envelhecimento. Para o tratamento com SF6, os parâmetros de excitação do plasma (12 Pa e 80 W) foram mantidos, variando-se o tempo do tratamento entre 2 e 180 minutos de modo a encontrar uma condição ótima para esse processo. Para a IIIP de Ar os parâmetros de excitação do plasma (5 Pa e 60 min) foram mantidos e a potência da radiofrequência foi variada entre 10 e 150 W. A energia de superfície e ângulo de contato foram obtidos pelo método da gota séssil em um goniômetro automatizado. A morfologia da superfície foi avaliada por microscopia eletrônica de varredura (MEV) e microscopia de força atômica (AFM). Espectroscopia de energia dispersiva (EDS) e espectroscopia de fotoelétrons de raios X (XPS) foram utilizadas para análises da composição química e estrutura molecular. Corrosão por plasma de O2 e imersão em água clorada foram utilizados para avaliar a resistência antes e após os tratamentos a plasma. Os resultados mostram que as amostras tratadas por 90, 120 e 180 minutos em plasmas de SF6 tornam-se hidrofóbica, mesmo após o envelhecimento, apresentando incorporação de flúor, alterando assim a composição química e morfológica da superfície do COPE. Melhorias substanciais foram observadas nessas amostras após os ensaios de corrosão, indicando que um aumento na vida útil do material em situações reais de uso possam ter sido alcançadas. A IIIP de Ar tornou as amostras inicialmente mais hidrofílicas do que a amostra como-recebida, porém após a ação do tempo, algumas amostras permaneceram hidrofóbicas enquanto outras amostras retornaram à condição inicial. Apesar da hidrofobicidade não ter sido alcançada em todas as amostras, alterações na rugosidade e na morfologia foram verificadas, principalmente nas amostras tratada com 100 W de potência do plasma, ocasionando em melhora na resistência do COPE à água clorada. Essa melhora na resistência é atribuída ao aumento da conectividade da estrutura pelo estabelecimento de reticulações geradas pelo processo de IIIP, densificando o material tornando a permeação de íons da solução mais difícil. / Thermoplastic elastomers have been widely used in substitution for conventional rubber, given that the feedstock is cheaper, easier to process and recyclable. Its mechanical properties are similar, but when applied to sealing components its resistance is limited due to the chlorine present in water, therefore, it is interesting to develop a surface treatment that do not alter the original characteristics, but make the material more robust. To achieve such result, we chose to submit the copolyester thermoplastic elastomer (COPE) to plasma. This material was naturally chosen, once it is widely used for sealing purposes in this specific industry. By using low pressure plasma with sulfur hexafluoride, we expect to alter COPEs surface by incorporating fluorine groups, thus making it hydrophobic. We also submitted the sample to a second treatment, by submersion to argon plasma, making the outer layer less defective and more entangled with aging, as observed in previous experiments. For SF6 treatment, the exiting plasma parameters (12Pa and 80W) were kept and the treatment time was varied between 2 to 180 minutes in order to find the optimal treatment time. For Argon IIIP, the plasma exciting parameters (5Pa and 60 min) were maintained, while the radio frequency variation was between 10 to 150W. Surface energy and contact angle were obtained by and automatic goniometer, through the sessile drop method. The surface's morphology was analyzed by electronic scanning microscope and atomic force microscopy. Dispersive energy spectroscopy and X-ray photoelectric spectroscopy were responsible for the chemical composition and molecular structure analyses the new surface's resistance was tested by O2 plasma corrosion and immersed in chlorinated water. Results show the samples treated for 90,120 and 180 minutes in SF6 plasma became hydrophobic, even after aging. The samples were substantially improved and its resistance prolonged its lifespan in conventional usage. Argon IIIP made the surface more hydrophilic. However, after time part of the material restored its original characteristics. Although hydrophobic it was not achieved, the roughness and morphology alteration (especially when treated with 100W of plasma) improved COPE'S resistance. The results are explained by the increase in the structure's ability to connect by the establishment of reticulate one generated by the IIP process, making the component denser and the ionic solution less permeable.
|
Page generated in 0.0871 seconds