• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 12
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

'Hybrid' non-destructive imaging techniques for engineering materials applications

Baimpas, Nikolaos January 2014 (has links)
The combination of X-ray imaging and diffraction techniques provides a unique tool for structural and mechanical analysis of engineering components. A variety of modes can be employed in terms of the spatial resolution (length-scale), time resolution (frequency), and the nature of the physical quantity being interrogated. This thesis describes my contributions towards the development of novel X-ray “rich” imaging experimental techniques and data interpretation. The experimental findings have been validated via comparison with other experimental methods and numerical modelling. The combination of fast acquisition rate and high penetration properties of X-ray beams allows the collection of high-resolution 3-D tomographic data sets at submicron resolution during in situ deformation experiments. Digital Volume Correlation analysis tools developed in this study help understand crack propagation mechanisms in quasi-brittle materials and elasto-plastic deformation in co-sprayed composites. For the cases of crystalline specimens where the knowledge of “live” or residual elastic strain distributions is required, diffraction techniques have been advanced. Diffraction Strain Tomography (DST) allows non-destructive reconstruction of the 2-D (in-plane) variation of the out-of-plane strain component. Another diffraction modality dubbed Laue Orientation Tomography (LOT), a grain mapping approach has been proposed and developed based on the translate-rotate tomographic acquisition strategy. It allows the reconstruction of grain shape and orientation within polycrystalline samples, and provides information about intragranular lattice strain and distortion. The implications of this method have been thoroughly investigated. State-of-the-art engineering characterisation techniques evolve towards scrutinising submicron scale structural features and strain variation using the complementarity of X-ray imaging and diffraction. The first successful feasibility study is reported of in operando stress analysis in an internal combustion engine. Finally, further advancement of ‘rich’ imaging techniques is illustrated via the first successful application of Time-of-Flight Neutron Diffraction Strain (TOF-NDST) tomography for non-destructive reconstruction of the complete strain tensor using an inverse eigenstrain formulation.
12

Microstructural characterisation of novel nitride nanostructures using electron microscopy

Severs, John January 2014 (has links)
Novel semiconductor nanostructures possess a range of notable properties that have the potential to be harnessed in the next generation of optical devices. Electron microscopy is uniquely suited to characterising the complex microstructure, the results of which may be related to the growth conditions and optical properties. This thesis investigates three such novel materials: (1) GaN/InGaN core/shell nanowires, (2) n-GaN/InGaN/p-GaN core/multi-shell microrods and (3) Zn<sub>3</sub>N<sub>2</sub> nanoparticles, all of which were grown at Sharp Laboratories of Europe. GaN nanowires were grown by a Ni-catalysed VLS process and were characterised by various techniques before and after InGaN shells were deposited by MOCVD. The majority of the core wires were found to have the expected wurtzite structure and completely defect free – reflected in the strong strain-free photoluminescence peak –with a- and m- axis orientations identified with shadow imaging. A small component, <5%, were found to have the cubic zinc-blende phase and a high density of planar faults running the length of the wires. The deposited shells were highly polycrystalline, partially attributed to a layer of silicon at the core shell interface identified through FIB lift-out of cross section samples, and accordingly the PL was very broad likely due to recombination at defects and grain boundaries. A high throughput method of identifying the core size indirectly via the catalyst particle EDX signal is described which may be used to link the shell microstructure to core size in further studies. An n-GaN/InGaN/p-GaN shell structure was deposited by MOCVD on the side walls of microrods etched from c-axis GaN film on sapphire, which offers the possibility of achieving non-polar junctions without the issues due to non-uniformity found in nanowires. Threading dislocations within the core related to the initial growth on sapphire were shown to be confined to this region, therefore avoiding any harmful effect on the junction microstructure. The shell defect density showed a surprising relationship to core size with the smaller diameter rods having a high density of unusual 'flag' defects in the junction region whereas the larger diameter sample shells appeared largely defect free, suggesting the geometry of the etched core has an impact on the strain in the shell layers. The structure of unusual 'flag' defects in the m-plane junctions was characterised via diffraction contrast TEM, weak beam and atomic resolution ADF STEM and were shown to consist of a basal plane stacking faults meeting a perfect or partial dislocation loop on a pyramidal plane, the latter likely gliding in to resolve residual strain due to the fault formed during growth. Zn<sub>3</sub>N<sub>2</sub> has the required bandgap energy to be utilised as a phosphor with the additional advantage over conventional materials of its constituent elements not being toxic or scarce. The first successful synthesis of Zn<sub>3</sub>N<sub>2</sub> nanoparticles appropriate to this application was confirmed via SAD, EDX and HRTEM, with software developed to fit experimental polycrystalline diffraction patterns to simulated components suggesting a maximum Zn<sub>3</sub>N<sub>2</sub> composition of ~30%. There was an apparent decrease in crystallinity with decreasing particle size evidenced in radial distribution function studies with the smallest particles appearing completely amorphous in 80kV HRTEM images. A rapid change in the particles under the electron beam was observed, characterised by growth of large grains of Zn<sub>3</sub>N<sub>2</sub> and ZnO which increased with increasing acceleration voltage suggesting knock-on effects driving the change. PL data was consistent with the bandgap of Zn<sub>3</sub>N<sub>2</sub> blue shifted from 1.1eV to around 1.8eV, confirming the potential of the material for application as a phosphor.
13

Advanced materials for plasma facing components in fusion devices

Thomas, Gareth James January 2009 (has links)
This thesis describes the design, manufacture and characterisation of thick vacuum plasma sprayed tungsten (W) coatings on steel substrates. Fusion is a potentially clean, sustainable, energy source in which nuclear energy is generated via the release of internal energy from nuclei. In order to fuse nuclei the Coulomb barrier must be breached - requiring extreme temperatures or pressures – akin to creating a ‘star in a box’. Tungsten is a promising candidate material for future fusion reactors due to a high sputtering threshold and melting temperature. However, the large coefficient of thermal expansion mismatch with reactor structural steels such as the low activation steel Eurofer’97 is a major manufacturing and in-service problem. A vacuum plasma spraying approach for the manufacture of tungsten and tungsten/steel graded coatings has been developed successfully. The use of graded coatings and highly textured 3D interface surfi-sculpt substrates has been investigated to allow the deposition of thick plasma sprayed tungsten coatings on steel substrates. Finite element models have been developed to understand the residual stresses that develop in W/steel systems and made use of experimental measurements of coating thermal history during manufacture and elastic moduli measured by nano-indentation. For both the graded and surfi-sculpt coating, the models have been used to understand the mechanism of residual stress redistribution and relief in comparison with simple W on steel coatings, particularly by consideration of stored strain energy. In the case of surfi-sculpt W coatings, the patterned substrate gave rise to regular stress concentrating features, and allowed 2mm thick W coatings to be produced reproducibly without delamination. Preliminary through thickness residual stress measurements were compared to model predictions and provided tentative evidence of significant W coating stress relief by regulated coating segmentation.
14

Towards large area single crystalline two dimensional atomic crystals for nanotechnology applications

Wu, Yimin A. January 2012 (has links)
Nanomaterials have attracted great interest due to the unique physical properties and great potential in the applications of nanoscale devices. Two dimensional atomic crystals, which are atomic thickness, especially graphene, have triggered the gold rush recently due to the fascinating high mobility at room temperature for future electronics. The crystal structure of nanomaterials will have great influence on their physical properties. Thus, this thesis is focused on developing the methods to control the crystal structure of nanomaterials, namely quantum dots as semiconductor, boron nitride (BN) as insulator, graphene as semimetal, with low cost for their applications in photonics, structural support and electronics. In this thesis, firstly, Mn doped ZnSe quantum dots have been synthesized using colloidal synthesis. The shape control of Mn doped ZnSe quantum dots has been achieved from branched to spherical by switching the injection temperature from kinetics to thermodynamics region. Injection rates have been found to have effect on controlling the crystal phase from zinc blende to wurtzite. The structural-property relationship has been investigated. It is found that the spherical wurtzite Mn doped ZnSe quantum dots have the highest quantum yield comparing with other shape or crystal phase of the dots. Then, the Mn doped ZnSe quantum dots were deposited onto the BN sheets, which were micron-sized and fabricated by chemical exfoliation, for high resolution imaging. It is the first demonstration of utilizing ultrathin carbon free 2D atomic crystal as support for high resolution imaging. Phase contrast images reveal moiré interference patterns between nanocrystals and BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes using a newly developed equation method. Double diffraction is observed and has been analyzed using a vector method. As only a few microns sized 2D atomic crystal, like BN, can be fabricated by the chemical exfoliation. Chemical vapour deposition (CVD) is as used as an alternative to fabricate large area graphene. The mechanism and growth dynamics of graphene domains have been investigated using Cu catalyzed atmospheric pressure CVD. Rectangular few layer graphene domains were synthesized for the first time. It only grows on the Cu grains with (111) orientation due to the interplay between atomic structure of Cu lattice and graphene domains. Hexagonal graphene domains can form on nearly all non-(111) Cu surfaces. The few layer hexagonal single crystal graphene domains were aligned in their crystallographic orientation over millimetre scale. In order to improve the alignment and reduce the layer of graphene domains, a novel method is invented to perform the CVD reaction above the melting point of copper (1090 ºC) and using molybdenum or tungsten to prevent the balling of the copper from dewetting. By controlling the amount of hydrogen during the growth, individual single crystal domains of monolayer over 200 µm are produced determined by electron diffraction mapping. Raman mapping shows the monolayer nature of graphene grown by this method. This graphene exhibits a linear dispersion relationship and no sign of doping. The large scale alignment of monolayer hexagonal graphene domains with epitaxial relationship on Cu is the key to get wafer-sized single crystal monolayer graphene films. This paves the way for industry scale production of 2D single crystal graphene.

Page generated in 0.0405 seconds