• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 757
  • 399
  • 110
  • 85
  • 57
  • 37
  • 22
  • 11
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 2183
  • 2183
  • 1005
  • 641
  • 395
  • 386
  • 364
  • 325
  • 319
  • 274
  • 256
  • 244
  • 227
  • 145
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Electron microscopy of carbon nanotube paper

Kuehn, Marilyn Valles 01 October 2002 (has links)
No description available.
122

Electron microscopy of crystalline solids and non-classical crystal growth

Greer, Heather F. January 2013 (has links)
This project concerns the non-classical crystal growth of various porous and non-porous materials. In order to determine their crystal growth mechanism, the reaction was stopped at several different reaction times with the size, morphology, crystal structure and orientation of the particles analysed using scanning electron microscopy and high resolution transmission electron microscopy as the principal characterisation techniques. Other techniques used include X-ray diffraction, energy dispersive X-ray spectroscopy, selected area electron diffraction and thermal gravimetric analysis. Selected biomimetic systems include the early stage crystal growth of ZnO/gelatin composite twin-crystals and the time dependent microstructural evolution of CaCO₃/gelatin composite particles from spherulites into rods. Further investigations of the role of gelatin molecules were carried out by replacing gelatin by gum arabic. Using knowledge gained from synthetic systems, several travertine crust specimens collected from hot springs were investigated to gain an insight into the possible formation mechanisms of naturally occurring biominerals. Another form of ZnO investigated was the formation of core-shell ZnO hexagonal microdisks and selective dissolution of their core to form microstadiums followed by the selective growth of nanorods and nanocones onto the columnar surfaces of the microstadiums to generate branched-microstadiums. The formation mechanism of ultrasonically prepared BiOBr displaying a flower-like architecture was investigated. These BiOBr assemblies are found to exhibit excellent photocatalytic activity and stability during the photodegradation of Rh.B under visible-light irradiation. Finally mesoporous silicate plates displaying a single crystal-like property were re-investigated to clarify whether the previously reported mesoporous silicate plates exhibiting a single crystalline property were one-phase materials or a composite of non-crystalline mesoporous silicate and crystalline zeolite.
123

Optical sectioning in the aberration-corrected scanning transmission and scanning confocal electron microscope

Behan, Gavin Joseph January 2009 (has links)
This thesis concerns the experimental application of the technique of optical sectioning in the aberration-corrected scanning transmission electron microscope (STEM). Another aim was to perform optical sectioning experiments on the still relatively new scanning confocal electron microscope (SCEM). To test the feasibility of this technique, experiments were performed on a variety of samples to measure the achievable depth response. Deconvolution methods were explored in an attempt to further improve the depth response. Finally, some of the first optical sectioning experiments were performed in the SCEM using both elastic and inelastically scattered electrons. The results showed a clear need to investigate confocal electron microscopy due to the missing cone problem for incoherent imaging in the STEM. This is particularly evident when imaging objects of greater width than the STEM probe. Confocal electron microscopy using inelastic electrons appeared to be a promising imaging mode for the future with this thesis consisting of early work in the field.
124

Structural Characterisation of Proteins from the Peroxiredoxin Family

Phillips, Amy January 2014 (has links)
The oligomerisation of protein subunits is an area of much research interest, in particular the relationship to protein function. In the last decade, the potential to control the interactions involved in order to design constructs with tuneable oligomeric properties in vitro has been pursued. The subject of this thesis is the quaternary structure of members of the peroxiredoxin family, which have been seen to assume an intriguing array of organisations. Human Peroxiredoxin 3 (HsPrx3) and Mycobacterium tuberculosis alkyl hydroperoxide reductase (MtAhpE) catalyse the detoxification of reactive species, preferentially hydrogen peroxide and peroxynitrite respectively, and form an essential part of the antioxidant defence system. As well as their biomedical interest, the ability of these proteins to form organised supramolecular assemblies makes them of interest in protein nanotechnology. The work described focusses on the elucidation of the quaternary structure of both proteins, resolving previous debates about their oligomeric state. The factors influencing oligomerisation were examined through biophysical characterisation in different conditions, using solution techniques including chromatography, light and X-ray scattering, and electron microscopy. The insight gained, along with analysis of the protein-protein interfaces, was used to alter the quaternary structure through site-directed mutagenesis. This resulted in a level of control over the protein’s oligomeric state to be achieved, and novel structures with potential applications in nanotechnology to be generated. The activity of the non-native structures was also assessed, to begin to unravel the relationship between peroxiredoxin quaternary structure to enzyme activity. The formation and structure of very high molecular weight complexes of HsPrx3 were explored using electron microscopy. The first high resolution structural data for such a complex is presented, analysis of which allowed the theory of an assembly mechanism to be proposed.
125

Development of copper-alumina composites for abrasive wear applications

Toth-Antal, Bence, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
Copper-alumina composites were developed for testing in abrasive wear applications. The composites featured a porous continuous ceramic-preform network infiltrated by a liquid metal to form the final consolidated composite. The liquid metal phase was pure copper. Six different ceramic preform variants were tested. Ceramic volume fractions of 40, 50 and 60% were used, of two preform types; one pure-alumina, and one with additional 2wt% copper(I) oxide (CU20), functioning as an infiltration aid, the effects of which were determined in a previous study; the copper-oxide reduced infiltration pressure and allowed the use of higher ceramic phase volume fraction in the final composite. Abrasive wear tests against two automotive braking system materials were conducted. Grey cast iron of alloy type GG15 was used to establish a baseline for behaviour of the six different composite samples and compare them. Following this, the three volume fraction variants of samples using the copper-oxide infiltration aid were trialled against a commercially-available European passenger vehicle brake pad friction material; ABEX 6091. Wear tests were conducted on a pin-on-disc tribometer. Hemispherical-headed pins were made from the composite and tested against rotating discs of the grey cast iron and the ABEX friction material. Contact velocity was kept constant at Ims-?? at room temperature in air, and contact loads up to 15N were used. Test loads of 1-4N were used against grey cast iron, and 15N against the ABEX friction material. Optical micrography was used to monitor the wear rate of samples tested against grey cast iron. Scanning electron microscopy (SEM) was used to characterise bulk microstructures and evaluate surface wear features. Transmission electron microscopy (TEM) was used for further microstructural investigation of the sintering and interfacial features of the undamaged pin samples, as well as damage zones and tribofilm compositions. Focussed ion beam (FIB) milling was used to create subsurface cross-sections of wear regions and prepare TEM samples. The wear performance of the different sample types was compared by ceramic content and preform additives. It was found that the wear resistance of pure-alumina preform composites was dependent on ceramic volume fraction. Increasing ceramic content lead to increased wear resistance. The lower sinter temperature of the samples with the copper oxide additive led to reduced wear resistance compared with the monolithic alumina preforms and changes in ceramic volume fractions were not discernable in wear resistance against grey cast iron. This could be further supported by qualitative micrographic observations. All tests against grey cast iron were dominated by tribochemical film formation, which was determined to be oxidation of the iron which formed at the composite pin contact surface. Further testing of the copper-oxide containing samples against the ABEX friction material revealed a mixed result; the 50 and 60% ceramic volume samples produced near-identical wear performance, while the 40% sample suffered poor wear resistance. The dominant wear mechanism of composite pins tested against the ABEX friction material was abrasive wear. Sub-surface analysis of wear pins revealed a prominent damage layer forming at the contact surface of all pin samples which progressively grew into the bulk material. This layer was believed to have an important effect on the wear behaviour of the materials.
126

Atomic resolution microscopy using electron energy-loss spectroscopy

Witte, C. January 2008 (has links)
This thesis explores the theory of electron energy-loss spectroscopy (EELS) in atomic resolution electron microscopy. / The first unequivocal evidence of the effective nonlocal potential in momentum-transfer-resolved EELS is presented. For suitable geometries, the nonlocal potential can be well approximated by a local potential. In scanning transmission electron microscopy (STEM) the validity of this is mainly influenced by the detector size and, contrary to conventional wisdom, a thin annular detector does not allow direct image interpretation. It is found that the best way to ensure the potential is well approximated by a local potential is to use a detector with a large collection angle. / To simplify computation and interpretation it is desirable to make the single-channelling approximation. In this approximation only the elastic scattering of the probe before the ionisation event is modelled. It is shown how this approximation breaks down for the small detectors used in momentum-transfer-resolved EELS and this is confirmed with experimental results. Double-channelling calculations, where the channelling of the probe both before and after the ionisation event are modelled, can also be simulated. An alternative approximation for small detectors that includes double channelling and is more applicable for momentum-transfer-resolved EELS is also presented. / Beyond chemical information, the fine structure of an absorption edge gives bonding and electronic information. Incorporating fine structure into channelling theory allows the exploration of the effects of channelling on fine structure. The weighting of the two different spectra in graphite, as a function of incident probe tilt in momentum-transfer-resolved EELS, is calculated using double-channelling simulations. This is combined with experimental data and multivariate statistical analysis to extract the two physical spectra, greatly simplifying the analysis of a large data set. / The effect of the nonlocal potential and channelling on site-specific electronic structure analysis by channelling EELS is examined. It is found that using a large on-axis detector can make the interaction effectively local, leading to a greater change in the spectra as a function of sample tilt. Alternatively offsetting the detector can achieve similar results but at the cost of greater statistical noise. Channelling calculations were combined with the program FEFF and the full energy differential cross section was calculated from first principles for the aluminium K edge as a function of sample tilt in nickel aluminate spinel. Qualitative agreement with experiment was found but quantitative agreement will require further investigation. / The theory of fine structure in STEM was examined, using strontium titanate to see how the high spatial resolution of STEM can be used in conjunction with energy-loss near-edge spectroscopy measurements. The possibility of imaging unoccupied electron molecular orbitals using STEM was also examined.
127

Development of copper-alumina composites for abrasive wear applications

Toth-Antal, Bence, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
Copper-alumina composites were developed for testing in abrasive wear applications. The composites featured a porous continuous ceramic-preform network infiltrated by a liquid metal to form the final consolidated composite. The liquid metal phase was pure copper. Six different ceramic preform variants were tested. Ceramic volume fractions of 40, 50 and 60% were used, of two preform types; one pure-alumina, and one with additional 2wt% copper(I) oxide (CU20), functioning as an infiltration aid, the effects of which were determined in a previous study; the copper-oxide reduced infiltration pressure and allowed the use of higher ceramic phase volume fraction in the final composite. Abrasive wear tests against two automotive braking system materials were conducted. Grey cast iron of alloy type GG15 was used to establish a baseline for behaviour of the six different composite samples and compare them. Following this, the three volume fraction variants of samples using the copper-oxide infiltration aid were trialled against a commercially-available European passenger vehicle brake pad friction material; ABEX 6091. Wear tests were conducted on a pin-on-disc tribometer. Hemispherical-headed pins were made from the composite and tested against rotating discs of the grey cast iron and the ABEX friction material. Contact velocity was kept constant at Ims-?? at room temperature in air, and contact loads up to 15N were used. Test loads of 1-4N were used against grey cast iron, and 15N against the ABEX friction material. Optical micrography was used to monitor the wear rate of samples tested against grey cast iron. Scanning electron microscopy (SEM) was used to characterise bulk microstructures and evaluate surface wear features. Transmission electron microscopy (TEM) was used for further microstructural investigation of the sintering and interfacial features of the undamaged pin samples, as well as damage zones and tribofilm compositions. Focussed ion beam (FIB) milling was used to create subsurface cross-sections of wear regions and prepare TEM samples. The wear performance of the different sample types was compared by ceramic content and preform additives. It was found that the wear resistance of pure-alumina preform composites was dependent on ceramic volume fraction. Increasing ceramic content lead to increased wear resistance. The lower sinter temperature of the samples with the copper oxide additive led to reduced wear resistance compared with the monolithic alumina preforms and changes in ceramic volume fractions were not discernable in wear resistance against grey cast iron. This could be further supported by qualitative micrographic observations. All tests against grey cast iron were dominated by tribochemical film formation, which was determined to be oxidation of the iron which formed at the composite pin contact surface. Further testing of the copper-oxide containing samples against the ABEX friction material revealed a mixed result; the 50 and 60% ceramic volume samples produced near-identical wear performance, while the 40% sample suffered poor wear resistance. The dominant wear mechanism of composite pins tested against the ABEX friction material was abrasive wear. Sub-surface analysis of wear pins revealed a prominent damage layer forming at the contact surface of all pin samples which progressively grew into the bulk material. This layer was believed to have an important effect on the wear behaviour of the materials.
128

Effect of the cardiac glycoside, digoxin, on neuronal viability, serotonin production and brain development in the embryo

Van Tonder, Jacob John January 2007 (has links)
Thesis (MSc.(Anatomy)--Faculty of Health Sciences)-University of Pretoria, 2007. / Includes bibliographical references.
129

Electrocatalytic detection of pesticides with electrodes modified with nanoparticles of phthalocyanines and multiwalled carbon nanotubes

Siswana, Msimelelo Patrick January 2013 (has links)
Three types of electrodes: carbon paste electrodes modified with nanoparticles of metallophthalocyanines (MPcNP-CPEs, M = Mn, Fe, Ni, Co), basal plane pyrolytic graphite electrodes modified with iron or nickel phthalocyanine nanoparticles and multiwalled carbon nanotube composites (FePcNP/MWCNT-BPPGE or NiPcNP/MWCNT-BPPGE),and basal plane pyrolytic graphite electrodes modified with multiwalled carbon nanotubes and electropolymerized metal tetra-aminophthalocyanines (poly-MTAPc-MWCNT-BPPGE), where M is Mn, Fe, Ni or Co, were prepared. Electrochemical characterizations showed that faster electron transfer kinetics occurred at the NiPcNP/MWCNT-BPPGE than at the FePcNP/MWCNT-BPPGE surface. SEM and electrochemical characterizations of poly-MTAPc-MWCNT-BPPGE showed that MTAPc had been deposited on the MWCNTBPPGE surface, and that the poly-CoTAPc-MWCNT-BPPGE exhibited the fastest electron transfer kinetics of all the poly-MTAPc-MWCNT-BPPGEs. Using amitrole and asulam as test analytes, electrochemical experiments showed that, amongst the CPEs, the FePcNP-CPE and NiPcNP-CPE displayed the most electrocatalytic behavior towards amitrole and asulam oxidation, respectively, and further experiments were done to obtain the electrochemical parameters associated with these electrodes and the corresponding analytes. Although, the FePcNP/MWCNT- BPPGE displayed electrocatalytic behavior towards amitrole oxidation in comparison with the bare BPPGE, it was less electrocatalytic than the FePcNP-CPE in terms of detection potential. The NiPcNP/MWCNT-BPPGE displayed the same detection potential as the NiPcNP-CPE. The poly-FeTAPc-MWCNT-BPPGE exhibited the most electrocatalytic behavior towards amitrole, of all the electrodes investigated, and the poly-CoTAPc-MWCNT-BPPGE displayed the best electrocatalytic behavior towards asulam, amongst the poly-MTAPc-MWCNT-BPPGEs.
130

Estudo das propriedades mecanicas e dos mecanismos de fratura de fibras sinteticas do tipo nailon e poliester em tecidos de engenharia / Study of mechanical properties and fracture mechanisms of synthetic fibers like nylon and polyester in engineering fabrics

CARDOSO, SERGIO G. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:24Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:51Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP

Page generated in 0.0859 seconds