• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 223
  • 30
  • 27
  • 21
  • 11
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 397
  • 397
  • 129
  • 52
  • 44
  • 41
  • 39
  • 36
  • 33
  • 33
  • 31
  • 30
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Studies on Electron Transfer Pathway and Characterization of Direct Electron Transfer-Type Bioelectrocatalysis of Fructose Dehydrogenase / フルクトース脱水素酵素による直接電子移動型酵素電極反応の電子移動経路とその特性評価

Kawai, Shota 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第19022号 / 農博第2100号 / 新制||農||1030(附属図書館) / 学位論文||H27||N4904(農学部図書室) / 31973 / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 加納 健司, 教授 阪井 康能, 教授 小川 順 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
52

Characterization of Charge Transfer Processes Across Perylene Diimide/Electrode Interfaces for Organic Photovoltaic Devices

Zheng, Yilong January 2016 (has links)
Charge transfer efficiency at the organic/transparent conducting oxide (TCO) interface is one of the key parameters controlling the overall efficiency of organic photovoltaics (OPVs). Modification of this interface with a redox-active organic surface modifier may further enhance the charge transfer across the interface by providing a charge-transfer pathway between the electrode and the organic active layer. Functionalized perylene diimide molecules (PDI) are useful for modifying metal oxide/acceptor interfaces for inverted solar cell devices because their LUMO energy level is close to some commonly used acceptor molecules. The effects of PDI structural parameters on the interfacial charge transfer processes across the organic/ITO interface were investigated. Six different PDI monolayers with different structural parameters were deposited on ITO surfaces to investigate the relationship between molecular orientation, linker length, aggregation and charge transfer process. The PDI orientation, degree of PDI aggregation and charge transfer process acrosses PDI/ITO interfaces were characterized by polarized ATR spectroscopy, PM-ATR spectroscopy and photoelectrochemistry. Both linker length and orientation affected the tunneling distance between PDI and ITO, therefore affecting the charge transfer rate constant across the PDI/ITO interfaces. PDI aggregation forced a more out-of-plane orientation of PDI molecules and increased the overall measured charge transfer rate constant. However, PDI aggregation also increased the excited state recombination rate which ultimately led to decrease of the charge collection efficiency. The first application of a PM-TIRF platform to characterize the electron-transfer processes of PDI monomeric films across the organic/electrode interface is presented. The PM-TIRF technique provides higher sensitivity as well as the capability to measure very fast charge transfer events, compared to other commonly used potential-modulated spectroscopy techniques. PDI-phenyl-PA monomeric films exhibited a more in-plane orientation compared with aggregated films and showed a smaller charge transfer rate constant across the PDI/ITO interfaces compared with PDI films with higher degrees of aggregation after normalizing the tunneling distance contributions.
53

Transfert ultrarapide d’électron et transfert modéré d’énergie au sein d’assemblages supramoléculaires de colorants et d’un cluster de palladium / Ultrafast electron and moderate energy transfers within supramolecular assemblies of dyes and a palladium cluster

Luo, Peng January 2016 (has links)
Résumé : Les transferts d’électrons photo-induits et d’énergie jouent un rôle primordial dans un grand nombre de processus photochimiques et photobiologiques, comme la respiration ou la photosynthèse. Une très grande quantité de systèmes à liaisons covalentes ont été conçus pour copier ces processus de transferts. Cependant, les progrès sont, en grande partie, limités par les difficultés rencontrées dans la synthèse de nouveaux couples de types donneurs-accepteurs. Récemment, des espèces utilisant des liaisons non-covalentes, comme les liaisons hydrogènes, les interactions [pi]-[pi], les liaisons de coordination métal-ligands ou encore les interactions électrostatiques sont le centre d’un nouvel intérêt du fait qu’ils soient plus faciles à synthétiser et à gérer pour obtenir des comportements de transferts d’électrons ou d’énergie plus flexibles et sélectifs. C’est dans cette optique que le travail de cette thèse a été mené, i.e. de concevoir des composés auto-assemblés avec des porphyrines et un cluster de palladium pour l’étude des transferts d’électrons photo-induits et d’énergie. Cette thèse se divise en quatre parties principales. Dans la première section, le chapitre 3, deux colorants porphyriniques, soit le 5-(4-carboxylphényl)-10, 15, 20-tristolyl(porphyrinato)zinc(II) (MCP, avec Na+ comme contre-ion) et 5, 15-bis(4-carboxylphényl)-15, 20-bistolyl(porphyrinato)zinc(II) (DCP, avec Na+ comme contre-ion) ont été utilisés comme donneurs d’électrons, et le [Pd3(dppm)3(CO)]2+ ([Pd32+], dppm = (Ph2P)2CH2, PF6‾ est le contre-ion) a été choisi comme accepteur d’électrons. La structure de l’assemblage [Pd32+]•••porphyrine a été élucidée par l’optimisation des géométries à l’aide de calculs DFT. La spectroscopie d’absorption transitoire (TAS) montre la vitesse de transferts d’électrons la plus rapide (< 85 fs, temps inférieurs à la limite de détection) jamais enregistrée pour ce type de système (porphyrine-accepteur auto-assemblés). Généralement, ces processus sont de l’ordre de l’échelle de la ps-ns. Cette vitesse est comparable aux plus rapides transferts d’électrons rapportés dans le cas de systèmes covalents de type porphyrine-accepteur rapide (< 85 fs, temps inférieurs à la limite de détection). Ce transfert d’électrons ultra-rapide (ket > 1.2 × 1013 s-1) se produit à l’état énergétique S1 des colorants dans une structure liée directement par des interactions ioniques, ce qui indique qu’il n’est pas nécessaire d’avoir de forts liens ou une géométrie courbée entre le donneur et l’accepteur. Dans une deuxième section, au chapitre 4, nous avons étudié en profondeur l’effet de l’utilisation de porphyrines à systèmes π-étendus sur le comportement des transferts d’électrons. Le colorant 9, 18, 27, 36-tétrakis-meso-(4-carboxyphényl)tétrabenzoporphyrinatozinc(II) (TCPBP, avec Na+ comme contre-ion) a été sélectionné comme candidat, et le 5, 10, 15, 20-tétrakis-meso-(4-carboxyphényl)porphyrineatozinc(II) (TCPP, avec Na+ comme contre-ion) a aussi été utilisé à des fins de comparaisons. TCPBP et TCPP ont, tous deux, été utilisés comme donneurs d’électrons pour fabriquer des assemblages supramoléculaires avec le cluster [Pd32+] comme accepteur d’électrons. Les calculs DFT ont été réalisés pour expliquer les structures de ces assemblages. Dans les conditions expérimentales, ces assemblages sont composés principalement d’une porphyrine avec 4 équivalents de clusters. Ces systèmes ont aussi été investigués par des mesures de quenching (perte de luminescence), par électrochimie et par d’autres techniques. Les transferts d’électrons (< 85 fs; temps inférieurs à la limite de détection) étaient aussi observés, de façon similaire aux assemblages MCP•••[Pd32+] et [Pd32+]•••DCP•••[Pd32+]. Les résultats nous indiquent que la modification de la structure de la porphyrine vers la tétrabenzoporphyrine ne semble pas influencer le comportement des cinétiques de transferts d’électrons (aller ou retour). Dans la troisième section, le chapitre 5, nous avons synthétisé la porphyrine hautement [pi]-conjuguée: 9, 18, 27, 36-tétra-(4-carboxyphényléthynyl)tétrabenzoporphyrinatozinc(II) (TCPEBP, avec Na+ comme contre-ion) par des fonctionnalisations en positions meso- et β, β-, qui présente un déplacement vers le rouge de la bande de Soret et des bandes Q. TCPEBP était utilisé comme donneur d’électrons pour fabriquer des motifs supramoléculaires avec le [Pd32+] comme accepteur d’électrons. Des expériences en parallèle ont été menées en utilisant la 5, 10, 15, 20-tétra-(4-carboxyphényl)éthynylporphyrinatozinc(II) (TCPEP, avec Na+ comme contre-ion). Des calculs DFT et TDDFT ont été réalisés pour de nouveau déterminer de façon théorique les structures de ces systèmes. Les constantes d’association pour les assemblages TCPEBP•••[Pd32+]x sont les plus élevées parmi tous les assemblages entre des porphyrines et le cluster de palladium rencontrés dans la littérature. La TAS a montré, encore une fois, des processus de transferts d’électrons dans des échelles de l’ordre de 75-110 fs. Cependant, les transferts de retour d’électrons sont aussi très rapides (< 1 ps), ce qui est un obstacle potentiel pour des applications en cellules solaires à pigment photosensible (DSSCs). Dans la quatrième section, le chapitre 6, les transferts d’énergie triplets (TET) ont été étudiés pour les assemblages MCP•••[Pd32+] et [Pd32+]•••DCP•••[Pd32+]. Les analyses spectrales des états transitoires dans l’échelle de temps de la ns-[mu]s démontrent de façon évidente les TETs; ceux-ci présentent des transferts d’énergie lents et/ou des vitesses moyennes pour des transferts d’énergie T1-T1 (3dye*•••[Pd32+] → dye•••3[Pd32+]*) opérant à travers exclusivement le mécanisme de Förster avec des valeurs de kET autour de ~ 1 × 105 s-1 selon les mesures d’absorption transitoires à 298 K. Des forces motrices non-favorables rendent ces types de processus non-opérants ou très lents dans les états T1. L’état T1 de [Pd32+] (~8190 cm-1) a été qualitativement déterminé par DFT et par la mise en évidence de l’émission S0 ← Tn retardée à 680-700 nm provenant de l’annihilation T1-T1, ce qui fait que ce cluster peut potentiellement agir comme un donneur à partir de ses états Tn, et accepteur à partir de T1 à l’intérieur de ces assemblages. Des pertes d’intensités de types statiques pour la phosphorescence dans le proche-IR sont observées à 785 nm. Ce travail démontre une efficacité modérée des colorants à base de porphyrines pour être impliquée dans des TETs avec des fragments organométalliques, et ce, même attachées grâce à des interactions ioniques. En conclusion, les assemblages ioniques à base de porphyrines et de clusters de palladium présentent des propriétés de transferts d’électrons S1 ultra-rapides, et des transferts d’énergie T1 de vitesses modérées, ce qui est utile pour de possibles applications comme outils optoélectroniques. D’autres études, plus en profondeur, sont présentement en progrès. / Abstract : Photoinduced electron and energy transfers play the pivotal role in various photochemical and photobiological redox processes including photosynthesis and respiration. Abundant covalently bonded systems have been designed to mimic the natural electron and energy transfer processes. However, the progress is often interfered by the difficulties to synthesize novel and versatile covalent donor-acceptor pairs. Recently, entities utilizing non-covalent interactions including hydrogen-bonding, [pi]-[pi] stacking, metal-ligand coordination and electrostatic interactions are becoming a hot topic since they are easy to be fabricated and tuned for selective and flexible electron and energy transfer behaviors. In this respect, the work presented in this thesis designed self-assemblies with porphyrins and a palladium cluster for photoinduced electron and energy transfers. It includes four main sections. In the first section, Chapter 3, two porphyrinic dyes, 5-(4-carboxylphenyl)-10, 15, 20-tristolyl(porphyrinato)zinc(II) (MCP, as sodium salt) and 5, 15-bis(4-carboxylphenyl)-15, 20-bistolyl(porphyrinato)zinc(II) (DCP, as sodium salt), were used as electron donors, and [Pd3(dppm)3(CO)]2+ ([Pd32+], dppm = (Ph2P)2CH2, as PF6‾ salt) cluster was adopted as the electron acceptor. The structure of [Pd32+]•••porphyrin assemblies was elucidated by geometry optimization using Density Functional Theory (DFT) calculations. Transient absorption spectroscopy (TAS) indicated a record fast electron transfer rate (< 85 fs, the time resolution limit) among the porphyrin-acceptor self-assemblies. Typically, these occur in ps-ns time scale. This rate is also comparable to the fastest electron transfer rate reported for the covalently linked porphyrin-acceptor systems (~ 50 fs, the time resolution limit). The ultrafast photo-induced electron transfers (ket > 1.2 × 1013 s-1) occurring at the S1 levels of the dyes in the structurally well-defined “straight up” ionic assemblies indicate that it is not necessary to have a strong bond and bent geometry between the donor and acceptor. In the second section, Chapter 4, we further studied the effect of using π-extended porphyrins on the electron transfer behavior of these assemblies. 9, 18, 27, 36-Tetrakis-meso-(4-carboxyphenyl)tetrabenzoporphyrinatozinc(II) (TCPBP, as a sodium salt) was selected as the candidate, and the 5, 10, 15, 20-tetrakis-meso-(4-carboxyphenyl)porphyrinatozinc(II) (TCPP, as a sodium salt) dye was also studied for comparison purposes. TCPBP and TCPP were both utilized as electron donors to fabricate supramolecular assemblies with the [Pd32+] cluster as the electron acceptor. DFT calculations were used to explain the structure of these assemblies. Under the experimental conditions used, these assemblies mainly exist in the form of one porphyrin with four equivalent clusters. These systems were also investigated by quenching measurements, electrochemistry, and other techniques. Ultrafast electron transfers (< 85 fs; time resolution limit) were also observed, which is similar as those for MCP•••[Pd32+] and [Pd32+]•••DCP•••[Pd32+] assemblies. The results indicate the structural modification from porphyrin to tetrabenzoporphyrin does not seemingly influence the kinetic behavior of the forward and back electron transfers. In the third section, Chapter 5, we synthesized a highly [pi]-conjugated porphyrin, 9, 18, 27, 36-tetra-(4-carboxyphenylethynyl)tetrabenzoporphyrinatozinc(II) (TCPEBP, as a sodium salt) by meso- and β, β-bifunctionalization, which exhibits large red shift of the Soret and Q-bands. TCPEBP was utilized as electron donors to fabricate supramolecular motifs with [Pd32+] cluster as the electron acceptor. Parallel experiments were conducted using 5, 10, 15, 20-tetra-(4-carboxyphenyl)ethynylporphyrinatozinc(II) (TCPEP, as a sodium salt). DFT and TDDFT calculations were applied to elucidate the structure of these assemblies. Binding constants for TCPEBP•••[Pd32+]x is the largest one among all the assemblies with porphyrin and palladium cluster. TAS showed again the ultrafast electron transfer process within the 75-110 fs time frame. However, the back electron transfers are also very fast (< 1 ps), which may be a potential obstacle for future applications in dye-sensitized solar cells (DSSCs). In the fourth section, Chapter 6, triplet energy transfers (TET) of the assemblies MCP•••[Pd32+] and [Pd32+]•••DCP•••[Pd32+] were studied. The transient spectral analysis in the ns-[mu]s time scale clearly demonstrates evidence for TET, which shows a slow to medium T1-T1 energy transfer (3dye*•••[Pd32+] → dye•••3[Pd32+]*) operating through a Förster mechanism exclusively with kET values of ~ 1 × 105 s-1 based on transient absorption measurements at 298 K. Unfavourable reductive and oxidative driving forces make this type of process inoperative or very slow in the T1 states. The T1 state of [Pd32+] (~8190 cm-1) has been quantitatively determined by DFT computations and by evidence for a delayed S0 ← Tn emission at 680-700 nm arising from T1-T1 annihilation, which makes this cluster potentially acting as the energy donor from its Tn state, and T1 acceptor within the assemblies. The static quenching of their near-IR phosphorescence at 785 nm was observed. This work demonstrated a moderate efficiency of the porphyrin dye to be involved in TET with an organometallic fragment, even when attached through ionic interactions. Conclusively, ionic assemblies with porphyrins and palladium clusters exhibit ultrafast S1 electron transfer and moderate T1 energy transfer properties, which is useful for possible application as optoelectronic devices. Further research in more depth is in progress.
54

Experimental and Theoretical Models to Probe Mechanisms of Biological Charge Flow

Polizzi, Nicholas Francis January 2016 (has links)
<p>Nature is challenged to move charge efficiently over many length scales. From sub-nm to μm distances, electron-transfer proteins orchestrate energy conversion, storage, and release both inside and outside the cell. Uncovering the detailed mechanisms of biological electron-transfer reactions, which are often coupled to bond-breaking and bond-making events, is essential to designing durable, artificial energy conversion systems that mimic the specificity and efficiency of their natural counterparts. Here, we use theoretical modeling of long-distance charge hopping (Chapter 3), synthetic donor-bridge-acceptor molecules (Chapters 4, 5, and 6), and de novo protein design (Chapters 5 and 6) to investigate general principles that govern light-driven and electrochemically driven electron-transfer reactions in biology. We show that fast, μm-distance charge hopping along bacterial nanowires requires closely packed charge carriers with low reorganization energies (Chapter 3); singlet excited-state electronic polarization of supermolecular electron donors can attenuate intersystem crossing yields to lower-energy, oppositely polarized, donor triplet states (Chapter 4); the effective static dielectric constant of a small (~100 residue) de novo designed 4-helical protein bundle can change upon phototriggering an electron transfer event in the protein interior, providing a means to slow the charge-recombination reaction (Chapter 5); and a tightly-packed de novo designed 4-helix protein bundle can drastically alter charge-transfer driving forces of photo-induced amino acid radical formation in the bundle interior, effectively turning off a light-driven oxidation reaction that occurs in organic solvent (Chapter 6). This work leverages unique insights gleaned from proteins designed from scratch that bind synthetic donor-bridge-acceptor molecules that can also be studied in organic solvents, opening new avenues of exploration into the factors critical for protein control of charge flow in biology.</p> / Dissertation
55

Poços quânticos e transferência de elétrons /

Paulino, Karina Heloisa. January 2009 (has links)
Resumo: Neste trabalho foram resolvidos, através de Equação de Schrödinger independente do tempo, os potenciais biestáveis do Poço Duplo Quadrado Unidimensional Simétrico (PDQUS) e do Poço Duplo Assimétrico (PDQUA), concentrando neste último grande parte do estudo. Como todo PDQUS é ressonante por definição, é possível então estimar o tempo de tunelamento através da Fórmula de Rabi. O mesmo não acontece com PDQUA, pois nem todo poço duplo assimétrico é ressonante. Foi necessário então, encontrar barreiras de potencial e distância entre os poços que permitiram a ressonância, pois a probabilidade de tunelamento é muito maior que aquelas dos casos onde não há ressonância. Além do tempo de tunelamento, o tempo de transição eletrônica também é estimado, com o objetivo de propor um modelo de transferência eletrônica (TE). Uma possível aplicação para tal modelo está relacionada a sistemas biológicos ocorrendo por tunelamento e por transição, utilizando o PDQUA. Com base na TE em bactérias fotossintéticas, pôde-se obter informações estruturais, como: as distâncias e energias envolvidas no processo, que foram essenciais para os exemplos numéricos tratados nesse trabalho. / Abstract: In this work were resolved, by Schrödinger equation independent of time, the bistable potential of the One Dimensional Symmetric Double Square Well (PDQUS) and Asymmetric Double Well (PDQUA), concentrating largely in the latter study. As all PDQUS is resonant by definition, it is possible then estimate the time of tunneling through the Rabi formula. This not happens with PDQUA, because not all asymmetric double well is resonant. It was necessary then, to find potential barriers and distance between wells that allowed the resonance because the tunneling probability is much higher than those cases where there is no resonance. Besides the time of tunneling, the electronic transition time is also estimated, with the objective of proposing a model of electron transfer (TE). One possible application for such a model is related to biological systems occuring by tunneling and transition, using the PDQUA. Based on the TE in photosynthetic bacteria, could be obtained structural information, such as distances and energies involved in the process, which were essential for the numerical examples treated in this work. / Orientador: Elso Drigo Filho / Coorientador: Regina Maria Ricotta / Banca: Antônio Vidiella Barranco / Banca: Jorge Chaine / Mestre
56

Ferritin: Mechanistic Studies and Electron Transfer Properties

Zhang, Bo 08 August 2006 (has links)
Ferritins are ubiquitous iron storage proteins in living systems. Although much is known about the iron deposition process in ferritin and a mechanism has been developed, several important issues still remain unknown. One lingering question is the less than stoichiometric quantities of hydrogen peroxide detected in previous studies on animal ferritins. Extensive experimental data on identifying the species in competition for peroxide equivalents point to a surprising conclusion that H2O2 generated in the ferroxidase reaction is consumed by amine buffers that are commonly employed in in vitro ferritin studies, while non-nitrogen containing buffers, such as acetate, phosphate, and carbonate, do not react with H2O2. The effects of amine buffer oxidation on the Fe2+/O2 stoichiometry, the kinetics and the molecular mechanism of iron deposition are discussed. The ~2 nm ferritin shell surrounding the ~4000 Fe(O)OH mineral core was originally thought to isolate the core from the environment. However, synthesized Co- and Mn(O)OH cores in horse spleen and bacteria ferritins are shown to be rapidly reduced by ascorbic acid and horse spleen ferritin containing a reduced Fe(II) core (Fe(II)-HoSF) presumably without direct contact. Further experiments demonstrate that both Fe(II)-HoSF and Co-/Mn-ferritins bind to gold electrodes and exchange electrons through the metallic conductor. These results provide the first direct evidence for electron transfer (ET) through the ferritin shell. The nature of the ET pathway is further investigated by loading iron into native and recombinant ferritins using large oxidants that are too big to enter the ferritin interior and must accept electrons from Fe2+ through this pathway. Experimental results suggest that the endogenous redox center in heteropolymeric animal ferritins and the heme groups in bacteria ferritins mediate ET through the protein shell. Finally, the diffusion properties of ferritin pores are examined toward iron (2+ and 3+) and anion transfer. Iron transfer is studied by the formation of Prussian blue ([FeIIFeIII(CN)6]-) encapsulated in the ferritin cavity, and is consistent with a binding-dissociation model proposed previously for iron transfer through the three-fold channels. When native HoSF is reduced by methyl viologen in saline solutions, small anions such as F-, Cl-, and Br , accumulate in the ferritin interior while phosphate is released. No anion transfer is observed during the reduction of reconstituted HoSF with no phosphate in the core. The possibility of ferritin as an anion pump in vivo is proposed.
57

Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in clay minerals

Schaefer, Michael Vernon 01 May 2010 (has links)
Although interfacial electron transfer has been shown to occur for sorbed Fe(II) and Fe-oxides, it is unclear if a similar reaction occurs between sorbed Fe(II) and Fe(III)-bearing clay minerals. Here, we use the isotope specificity of 57Fe Mössbauer spectroscopy to demonstrate electron transfer between sorbed Fe(II) and structural Fe(III) in a nontronite clay mineral (NAu-2). Appearance of an Fe(II) doublet in the NAu-2 spectra after reaction with aqueous 56Fe(II) (56Fe is transparent in Mössbauer spectra) provided evidence for reduction of structural Fe(III). Mössbauer spectra using enriched 57Fe(II) reveal that Fe(II) is oxidized upon sorption to NAu-2, and the oxidation product of this reaction is a ferric oxide with spectral parameters similar to lepidocrocite. The reduction of structural Fe(III) by Fe(II) induces electron delocalization in the clay structure, which we observe by variable-temperature Mössbauer spectra and macroscopic color change indicative of Fe(II)-Fe(III) pairs. The extent of structural Fe(III) reduction in NAu-2 is equal to the amount of Fe(II) sorbed until approximately 15% reduction, after which point reduction is no longer concomitant with the amount of sorbed Fe(II).
58

Probing the electrochemical double layer: an examination of how the physical and electrical structure affects heterogeneous electron transfer

Eggers, Paul Kahu, Chemistry, Faculty of Science, UNSW January 2008 (has links)
In this research the environmental effects related to the position of a redox moiety with the electrochemical double layer were studied. This project was made possible with the synthesis of a series of lengths of ferrocene derived alkanethiols, a series of lengths of ferrocene derived norbornylogous bridges and a series of lengths of anthraquinone derived norbornylogous bridges. The series of ferrocene derived alkanethiols were used to study the effect of gradually varying the polarity of the self-assembled monolayers (SAMs) surface on the standard electron transfer rate constant and formal potential. This was achieved by varying the portion of hydroxyl to methyl terminated alkanethiol diluent in the SAM preparation step. It was found that the formal potential increased with a decreasing proportion of hydroxyl terminated diluent and increasing length of the diluent. For pure hydroxyl terminated diluent the formal potential was relatively independent of length. It was found that the rate constant increased for short alkane chain lengths with decreasing proportion of hydroxyl terminated diluent. However, it decreased in magnitude with long alkane chain lengths for low proportions of hydroxyl terminated diluent. The norbornylogous bridges were shown to stand proud above the diluent with a similar tilt angle as the alkanethiol diluent. The ferrocene derived norbornylogous bridges showed hydroxyl terminated monolayers had a slower rate constant then methyl terminated diluents independent of length and that it is highly probable that an alkane bridged redox moiety is located very close to the surface of the monolayer. SAMs were created with the ferrocene of the ferrocene derived norbornylogous bridges located at various heights above the monolayers surface. This was done by using various lengths of hydroxyl terminated diluent. It was found that the rate constant and the formal potential decreased with height above the surface. Interfacial potential distribution was used to account for this and to estimate a ??true?? formal potential. The anthraquinone derived norbornylogous bridges were tested at various pH values and heights above the surface. It was found that an accurate estimate for the electron transfer mechanism can not be made for surface bound species due to the effects of interfacial potential distribution. They demonstrated a novel technique for estimating the point of zero charge of the electrode.
59

Encapsulation of Redox Active Centers by Deep-Cavity Cavitands

Podkoscielny, Dagmara Izabella 18 May 2009 (has links)
This dissertation describes the effective encapsulation of redox active compounds inside deep-cavity cavitands: Gibb's octaacid40 and Rebek's 41 tetracarboxylate cavitand. Gibb's octaacid is a water-soluble, deep-cavity cavitand that forms well-characterized dimeric molecular capsules around hydrophobic guests. Both 1H NMR spectroscopic and voltammetric experiments clearly reveal that ferrocene plays the role of hydrophobic guest effectively. Ferrocene derivatives (ferrocenylmethyltrimethylammonium (FcNMe3+), ferrocenemethanol (FcOH), and ferrocene carboxylic acid (FcCOOH)) were also found to form inclusion complexes with octaacid cavitand however, in this case 1:1 (host to guest) ratio complexes are formed. This is in strong contrast with the dimeric capsule formed around ferrocene. Under the surveyed experimental conditions encapsulated ferrocene is electrochemically silent. We have also found that the negative charges around this dimeric molecular capsule play a very important role. For instance, hydrophobic cations, such as viologens,60 bind to the outer surface of the capsule. This opened a possibility of mediated electron transfer reactions between molecules bound inside the octaacid capsule and tightly attached to its outer surface in purely synthetic system. The cationic ferrocene derivative, ferrocenylmethyltrimethylammonium (FcNMe3+), was used as a mediator since its electrochemical potential range makes it suitable as a mediator molecule. In fact, our data clearly support that FcNMe3+ mediates electron transfer between encapsulated ferrocene and the electrode surface. Ferrocene, its derivatives (FcNMe3+ and FcOH), and cobaltocenium (Cob+) also form 1:1 inclusion complexes with Rebek's tetracarboxylate cavitand, which surprisingly are all voltammetrically silent. The formation of these inclusion complexes seems to be driven by hydrophobic interactions between the host and the guest. The lack of voltammetric response observed in this work is a very intriguing finding.
60

Ru(II) under illumination : A study of charge and energy transfer elementary processes / Les complexes de Ru(II) sous illumination: Etude des processus élémentaires de transferts de charges et d’énergie

Herman, Leslie C.V. 11 December 2008 (has links)
Une compréhension sans cesse plus pointue des processus élémentaires de transferts de charges et d’énergie, qui sont à la base même de nombreux processus biologiques, permet non seulement l’élaboration mais aussi l’amélioration de la mise au point de molécules photoactives utiles dans différentes applications. C'est le cas (i) de systèmes moléculaires et supramoléculaires destinés à mimer efficacement la photosynthèse, ou encore (ii) de molécules photoactives capables d’interagir avec des macromolécules biologiques et d’induire une transformation de ces biomolécules. C’est dans ce cadre général que s’inscrit l’élaboration de nouveaux complexes polyazaaromatiques de Ru(II) capables d’interagir avec la double hélice d’ADN et de photoréagir avec sa base la plus réductrice, la guanine, par transfert d’électron photoinduit. C’est sur la base de ces processus que des nouveaux agents antitumoraux photoactivables ont pu être développés. L’utilisation de complexes de Ru(II) dans le design d’entités supramoléculaires polymétalliques destinées à jouer le rôle de collecteurs de lumière et permettant ainsi de mimer les systèmes d’antennes naturels s’intègre également dans cette démarche. L’ensemble de notre travail s’est concentré sur ces deux domaines d’applications. Par l’étude de différents processus de transfert de charges/d’énergie au sein des complexes seuls (processus intramoléculaires) ou en interaction avec un environnement spécifique (processus intermoléculaires), nous avons souhaité mettre en évidence l’intérêt de l’utilisation d’un nouveau ligand plan étendu, le tpac, au sein de complexes du Ru(II). Un tel ligand permet en effet de conférer d’une part une affinité élevée des complexes résultants pour l’ADN, et d’autre part, de par sa nature pontante, de connecter des unités métalliques entre elles au sein d’entités supramoléculaires de taille importante. Les propriétés photophysiques de quatre complexes basés sur le ligand plan étendu tpac, le [Ru(phen)2tpac]2+ (P) et son homologue dinucléaire le [(phen)2Ru tpac Ru(phen)2]4+ (PP) (à base de ligands ancillaires phen), ainsi que le [Ru(tap)2tpac]2+ (T) et son homologue dinucléaire le [(tap)2Ru tpac Ru(tap)2]4+ (TT) (à base de ligands ancillaires tap), ont été étudiées et comparées entre elles. L’examen de ces propriétés, d’abord pour les complexes seuls en solution, en parallèle avec celles de complexes dinucléaires contenant un ligand pontant PHEHAT, a permis de mettre en évidence l’importance de la nature du ligand pontant utilisé. Ces résultats ont ainsi révélé qu’un choix judicieux du ligand pontant permet de construire des entités de grande taille capables de transférer l’énergie lumineuse vers un centre (cas du ligand PHEHAT), ou, au contraire, de relier entre elles des entités ne s’influençant pas l’une l’autre d’un point de vue photophysique (cas du ligand tpac). Les propriétés des complexes du tpac, étudiés cette fois en présence de matériel génétique (mononucléotide GMP, ADN ou polynucléotides synthétiques), se sont révélées très différentes selon que le complexe portait des ligands ancillaires phen (P, PP) ou tap (T, TT). Seuls les complexes à base de tap sont en effet photoréactifs envers les résidus guanine. Nous avons dès lors focalisé cette partie de notre travail sur les deux complexes T et TT. Cette photoréaction, ainsi que le transfert d’électron photoinduit entre ces complexes excités et la guanine, ont pu être mis en évidence par différentes techniques de spectroscopie d’émission tant stationnaire que résolue dans le temps, ainsi que par des mesures d’absorption transitoire dans des échelles de temps de la nano à la femto/picoseconde. L’étude du comportement photophysique des complexes en fonction du pH a en outre révélé de manière très intéressante que, pour des études en présence d’ADN, la protonation des états excités des complexes devait être considérée. Les résultats de cette étude nous ont fourni des pistes quant à l’attribution des processus observés en absorption transitoire. Le transfert d’électron a également fait l’objet d’une étude par des méthodes théoriques. Ces calculs ab initio ont permis de mettre en évidence une faible influence de l’énergie de réorganisation sur la vitesse de transfert d’électron, qui semble dépendre plus sensiblement de la non-adiabaticité du processus, mais surtout de l’énergie libre de la réaction et d’un éventuel couplage à un transfert de proton. L’ensemble des résultats obtenus avec les complexes T et TT en présence de matériel génétique, qui, de manière assez inattendue, sont très semblables, indiquent que ces complexes présentent tous deux un grand intérêt pour le développement de nouvelles drogues antitumorales photoactivables.

Page generated in 0.0647 seconds