• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechano-Activated Electronic and Molecular Structures

Wang, Ke 2009 December 1900 (has links)
For centuries, researchers have been trying to achieve precise control and tailor materials properties. Several approaches, i.e., thermo-activation, electro-activation, and photo-activation, have been widely utilized. As an alternate and fundamentally different approach, mechano-activation is still relatively less-known. In particular, understanding the roles of mechano-activated electronic and molecular structures is yet to be achieved. This research contributes the fundamental understanding in mechanisms of mechano-activation and its effects on materials properties. Experimental investigation and theoretical analysis were involved in the present research. A methodology was developed to introduce the mechnao-activation and to study its subsequent effects. There are three major areas of investigation involved. First, the means to introduce mechanoactivation, such as energetic particle collision or a bending deformation (tensile force); Second, in-situ and ex-situ characterization using AFM, FTIR, UV-Vis, and XPS etc. techniques; Third, theoretical analysis through modified Lennard-Jones potentials in order to explain the behavior of materials under mechano-activation. In the present research, experiments on a Diamond-Like Carbon (DLC) film, a Polyvinylidene Fluoride (PVDF) film, and the Silver-Crown Ether nanochains (Ag-NCs) were carried out. For DLC, the collision-induced transformation between hybridization states of carbon was confirmed, which also dominated the friction behavior of the film. For PVDF, results show that the applied tensile force induced the transformation of [alpha], [beta], and [upsilon] crystalline phase. In addition, the transformation observed was time and direction dependent. For Ag-NCs, a new approach based on the mechanism of mechano-activation was developed for nanochain structure synthesis. Molecular dynamics simulation and experimental results revealed that the formation of Ag-NCs is a synergetic physicalchemical procedure. Experimental results from DLC and PVDF were further used to validate the proposed potential, which brought new insight into the activation process. The current research achieves a precise control on engineering materials properties. The force-activated materials have wide applications in many areas, such as functional coating, sensing, and catalysis. In this study selected experiments have demonstrated the effects of mechanoactivation in different material systems (ceramic, polymer, metallic nano structure) and at different length scales. For the first time, a modified potential was proposed to explain the observed mechano-activation phenomena from the energy point of view. It was validated by experimental results of DLC and PVDF. The current research brings new understanding in mechano-activation and opens potential for its applications in tailoring materials properties.
2

Hydrogen diffusion in α-Al₂O₃ and α-Ga₂O₃ by first principles calculation / α-Al₂O₃およびα-Ga₂O₃中の水素拡散についての第一原理計算

Lee, Gyeongseo 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24616号 / 工博第5122号 / 新制||工||1979(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 奥田 浩司, 教授 中村 裕之 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM

Page generated in 0.0878 seconds