• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electronic Transitions in Thiocarbonyl Dichloride

Farnworth, Edward Robert 07 1900 (has links)
<p> Calculations have been done for H₂O, F₂CO, Cℓ₂CO, H₂CS, F₂CS and Cℓ₂CS, to determine the transition energy and oscillator strength of the ¹A₂ ← ¹A₁(n → π*), ¹A₁ ← ¹A₁(π → π*), ¹B₂ ← ¹A₁(n → σ*) and ¹B₁ ← ¹A₁(σ → π*) transitions. Eigenvalues were obtained from CNDO programs and used to calculate the oscillator strength at three levels of approximation. </p> <p> The ¹A₁ ← ¹A₁(π → π*) transition of Cℓ₂CS has been analysed. Four ground state and three excited state frequencies were found. Coon's method was used to establish the assignment and predict an excited state bent out of plane by 26.6°. </p> <p> A previously unassigned transition in Cℓ₂CS has been labelled as A₂ ← ¹A₁(n → π*), on the basis of CNDO calculations, and five ground state frequencies have been found in the spectrum. </p> / Thesis / Master of Science (MSc)
2

Interpretation and relativistic simulation of selected electronic transitions:decays of M-shell hole states in atomic Cr, Br and Rb

Keskinen, J. (Juho) 28 November 2019 (has links)
Abstract In this thesis electronic structure of atomic chromium, rubidium and bromine are studied experimentally and theoretically through transitions and decay processes originating from selected M-shell hole states. The experiments are conducted with traditional methods of electron spectroscopy as well as more recent multicoincidence methods using pulsed synchrotron radiation and a magnetic bottle spectrometer. The observed electronic transitions are theoretically simulated with multiconfiguration Dirac-Fock method. Finally, the calculations are used to interpret the measured spectra to investigate the energy level structure and electron dynamics of the studied elements. / Original papers Original papers are not included in the electronically distributed version of the thesis. Keskinen, J., Huttula, S.-M., Mäkinen, A., Patanen, M., &amp; Huttula, M. (2015). Experimental and theoretical study of 3p photoionization and subsequent Auger decay in atomic chromium. Radiation Physics and Chemistry, 117, 209–216. https://doi.org/10.1016/j.radphyschem.2015.08.018 Keskinen, J., Lablanquie, P., Penent, F., Palaudoux, J., Andric, L., Cubaynes, D., … Jänkälä, K. (2017). Initial-state-selected MNN Auger spectroscopy of atomic rubidium. Physical Review A, 95(4). https://doi.org/10.1103/physreva.95.043402 http://jultika.oulu.fi/Record/nbnfi-fe201706207380 Keskinen, J., Jänkälä, K., Huttula, S.-M., Kaneyasu, T., Hikosaka, Y., Shigemasa, E., … Lablanquie, P. (2019). Auger decay of the 3d hole in the isoelectronic series of Br*, Kr⁺ and Rb²⁺. Manuscript in preparation.
3

Caractérisation et dynamique des états excités des molécules aromatiques protonées / Characterization and dynamics of excited states of protonated aromatic molecules

Alata, Ivan 28 September 2012 (has links)
Les molécules aromatiques protonées jouent un rôle important dans les réactions de substitution électrophile aromatique, et dans différents processus biologiques. Ces molécules sont présentes aussi dans d’autres milieux tels que les flammes de combustion, les plasmas de divers hydrocarbures, les ionosphères planétaires (Titan) et le milieu interstellaire. Les molécules protonées sont très stables car elles ont des couches électroniques complètes mais elles sont en général très sensibles à leur environnement local car elles sont chargées : une étude en phase gazeuse est nécessaire pour déterminer leurs propriétés intrinsèques. Jusqu’à présent, très peu de chose était connu sur les molécules protonées isolées en phase gazeuse, seulement quelques résultats étaient disponibles. Ce manque de données venait de la difficulté de générer des molécules protonées en phase gazeuse et surtout de les produire à basse température (la protonation est une réaction exothermique). Récemment, des progrès ont permis d’étudier les molécules protonées en phase gazeuse à très basse température, en particulier par le développement des sources ioniques couplées avec des techniques d'expansion de jet supersonique. Grâce à cette technique on a enregistré le spectre photo fragmentation de l’état fondamental vers le premier état excité (S1←S0) de différentes molécules aromatiques protonées en phase gazeuse. Les molécules que nous avons étudiées peuvent être regroupées en quatre familles : Les molécules polycycliques aromatiques protonées linéaires (benzène, naphtalène, anthracène, tétracène, pentacène). Les molécules polycycliques aromatiques protonées non linéaires (fluorène, phénanthrène, pyrène). Les molécules protonées contenant un hétéro atome (benzaldéhyde, salicylaldéhyde, 1-naphthol et 2-naphthol, indole, aniline). Les agrégats protonés (dimère de benzène, naphtalène (H2O)n, n=1,2,3. naphtalène (NH3)n, n=1,2,3, benzaldéhyde (Ar , N2)). Dans les spectres enregistrés presque toutes les transitions électroniques S1←S0 sont décalées vers le rouge (basse énergie) par rapport à celui des molécules parentes neutres. Ce décalage est dû au caractère transfert de charge du premier état excité. Certains spectres sont résolus vibrationnellement, alors que pour d'autres molécules le spectre ne présente pas de progression vibrationnelle à cause d’un dynamique très rapide de l’état excité menant par des intersections coniques à l’état fondamental. Les spectres d’absorption des molécules protonées sont plus riches en vibrations par comparaison avec les molécules neutre. Cela reflète le changement relativement important de géométrie de l’état excité dû à son caractère transfert de charge. Les résultats expérimentaux ont été complétés par des calculs ab-initio qui ont permis de localiser la transition électronique, déterminer la structure géométrique et électronique, les modes de vibration et, pour certaines de ces molécules, la dynamique de l’état excité. Les calculs sont en général en très bon accord avec les expériences. / Protonated aromatic molecules play an important role in electrophilic aromatic substitution reactions, fundamental reactions in organic chemistry and in various biological processes. The interstellar medium is another environment which is likely to contain the protonated aromatic molecules, that’s because these molecules are stable chemically since they are close shell electronic structure. These molecules were also identified in others environments such as combustion flames, plasmas of various hydrocarbons and the upper atmosphere of Titan. Protonated molecules are usually very sensitive to their local environment; a gas phase study is required to determine their intrinsic properties. Until now, very little is known about the isolated protonated molecules, only a few results are available in the literature. This lack of data is due to the difficulties of the production and the cooling of these molecules in gas phase. The technical progress we have done has enabled the study of protonated molecules in the gas phase at very low temperatures, using an ion sources, supersonic jet and the laser induced photofragmentation techniques. Using this technique, we have recorded many electronic spectra (S1←S0) of different protonated molecules. We can regroup the studied molecules into four: Linear protonated polycyclic aromatic molecules (benzene, naphthalene, anthracene, tetracene, pentacene). Nonlinear protonated polycyclic aromatic molecules (fluorene, phenanthrene, pyrene). Protonated molecules containing an hetero atom (benzaldehyde, salicylaldehyde, 1-naphthol and 2-naphthol, indole, aniline). Protonated cluster (dimer of benzene, naphthalene (H2O)n, n = 1,2,3. Naphthalene (NH3)n, n = 1,2,3, benzaldehyde (Ar, N2)). Most of those spectra are red-shifted compare to the spectrums of neutral parent molecules. This red-shift is due to charge transfer character of the first excited state. Some spectra are vibrationally resolved, while for other molecules the spectrum do not shows any vibrational progression. This behaviour is explained by the dynamic of the excited state, this dynamic being usually is very fast, sometimes leading to the ground state through a conical intersection. The spectra of protonated molecules are very active vibrationally in comparison with neutral molecules, many vibrational modes forbidden for neutral molecule becomes active for the protonated one (Franck-Condon factor is not zero). This is reflecting the charge transfer character of the excited state. The experimental results were complemented by ab-initio calculations, which have allowed determining the electronic transition, the geometric and electronic structure of the molecule, the vibrational modes, and for some of these molecules the dynamics of excited state. Calculations are generally in very good agreement with experiments.

Page generated in 0.1205 seconds