• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relativistic atomic structure calculations applied to electronic transitions in atoms

Sankari, A. (Anna) 29 February 2008 (has links)
Abstract In this thesis, the electronic structure of selected atoms was investigated by means of electron and uorescence spectroscopy. Synchrotron radiation was used to excitate atoms in gas phase. In particular, the photoionization and subsequent Auger decay processes in metal vapours were studied as well as the resonant Auger decay in rare gases. The experimental results were analyzed together with theoretical predictions obtained utilizing the multiconfiguration Dirac-Fock method.
2

Experimental spectroscopic studies of metals with electron, ion, and optical techniques

Mäkinen, A. . (Ari ) 14 January 2014 (has links)
Abstract In this thesis, different spectroscopic methods are used for studying metals. Electron spectroscopy is applied for the study of binding energy shifts between atomic vapor and solid metals. Photoionization and Auger decay of high temperature aluminum vapors are investigated. Ionization of atomic chromium metal vapor by light absorption is studied with synchrotron radiation and time-of-flight ion mass spectroscopy. Optical spectroscopy is used for studying light emission from electric arc furnace plasma in experimental apparatuses developed during this work. Experimental techniques and sample preparation methods are presented.
3

Electron spectroscopy of atoms and molecules using synchrotron radiation, UV radiation and electron impact

Caló, A. (Antonio) 14 December 2007 (has links)
Abstract The present thesis investigates the electronic structure of selected atoms and molecules in vapor phase. Electron spectroscopy is applied for studying the electronic transitions following excitation and ionization with electron and photon bombardment. The work focuses on the photoionization and Auger decay of selected noble gasses, and on the photoionization and Auger decay of core ionized or resonant excited alkali halide molecules. The experimental results are compared with theoretical predictions.
4

Experimental spectroscopic studies of metals with electron, ion, and optical techniques

Mäkinen, A. (Ari) 14 January 2014 (has links)
Abstract In this thesis, different spectroscopic methods are used for studying metals. Electron spectroscopy is applied for the study of binding energy shifts between atomic vapor and solid metals. Photoionization and Auger decay of high temperature aluminum vapors are investigated. Ionization of atomic chromium metal vapor by light absorption is studied with synchrotron radiation and time-of-flight ion mass spectroscopy. Optical spectroscopy is used for studying light emission from electric arc furnace plasma in experimental apparatuses developed during this work. Experimental techniques and sample preparation methods are presented. / Original papers The original publications are not included in the electronic version of the dissertation. Huttula, M., Jänkälä, K., Mäkinen, A., Aksela, H., & Aksela, S. (2008). Core shell electron spectroscopy on high temperature vapors: 2s photoionization and Auger decay of atomic aluminium. New Journal of Physics, 10(1), 13009. https://doi.org/10.1088/1367-2630/10/1/013009 Huttula, M., Partanen, L., Mäkinen, A., Kantia, T., Aksela, H., & Aksela, S. (2009). KLL Auger decay in free aluminum atoms. Physical Review A, 79(2). https://doi.org/10.1103/physreva.79.023412 Aksela, S., Kantia, T., Patanen, M., Mäkinen, A., Urpelainen, S., & Aksela, H. (2012). Accurate free atom–solid binding energy shifts for Au and Ag. Journal of Electron Spectroscopy and Related Phenomena, 185(8–9), 273–277. https://doi.org/10.1016/j.elspec.2012.05.007 Mäkinen, A., Patanen, M., Aksela, S., & Aksela, H. (2012). Atom-solid 3p level binding energy shift of transition metals Cr, Mn, Fe, Co, and Ni. Journal of Electron Spectroscopy and Related Phenomena, 185(12), 573–577. https://doi.org/10.1016/j.elspec.2012.12.006 Mäkinen, A., Niskanen, J., & Aksela, H. (2012). Relative photoionization cross section of Cr atoms in the valence region. Physical Review A, 85(5). https://doi.org/10.1103/physreva.85.053411 Mäkinen, A., Niskanen, J., Tikkala, H., & Aksela, H. (2013). Optical emission from a small scale model electric arc furnace in 250–600 nm region. Review of Scientific Instruments, 84(4), 43111. https://doi.org/10.1063/1.4802833
5

Single-photon multiple ionisation of atoms and molecules investigated by coincidence spectroscopy : Site-specific effects in acetaldehyde and carbon dioxide

Zagorodskikh, Sergey January 2016 (has links)
In this thesis, multiple ionisation processes of free atoms and molecules upon single photon absorption are studied by means of a versatile multi-electron-ion coincidence spectroscopy method based on a magnetic bottle, primarily in combination with synchrotron radiation. The latter offered the possibility to access not only valence but also core levels, revealing processes, which promote the target systems into different charge states. One study focuses on double and triple ionisation processes of acetaldehyde (ethanal) in the valence region as well as single and double Auger decay of initial 1s core vacancies. The latter are investigated site-selectively for the two chemically different carbon atoms of acetaldehyde, scrutinising theoretical predictions specifically made for that system. A related study concentrates on core-valence double ionisation spectra of acetaldehyde, which have been investigated in the light of a previously established empirical model, and which have been used as test cases for analysing this kind of spectra by means of quantum chemical electronic structure methods of increasing sophistication. A third study investigates site-specific fragmentation upon 1s photoionisation of acetaldehyde using a magnetic bottle augmented with an in-line ion time-of-flight mass spectrometer. Experimental evidence is presented that bond rupture occurs with highest probability in the vicinity of the initial charge localisation and possible mechanisms are discussed. A site-specificity parameter P∆ is introduced to show that differences in fragmentation behavior between initial ionisations at chemically different carbon atoms probably persist even for identical internal energy contents in the nascent dications. In another study where both electrons and ions from Auger decay of core-excited and core-ionised states of CO2 are detected in coincidence, it is confirmed that O2+ is formed specifically in Auger decay from the C1s → π* and O1s → π* resonances, suggesting a decisive role of the π* orbital in the molecular rearrangement. Also, the molecular rearrangement is found to occur by bending in the resonant states, and O2+ is produced by both single and double Auger decay. A new version of the multi-electron-ion coincidence method, where the ion time-of-flight spectrometer is mounted perpendicularly to the electron flight tube, which affects less the electron resolution and which allows for position sensitive detection of the ions, is employed in combination with tunable soft X-rays to reveal the branching ratios to final Xen+ states with 2 &lt; n &lt; 9 from pure 4d-1, 4p-1, 4s-1, 3d-1 and 3p-1 Xe+ hole states. The coincident electron spectra give information on the Auger cascade pathways. / <p>Byte av lokal vid disputation till Polhemssalen.</p>
6

Auger decay in double core ionized molecules

Inhester, Ludger 08 August 2013 (has links)
Röntgen Freie Elektronen Laser ermöglichen es Doppel-K-Schalen Löchern in Molekülen in aufeinanderfolgenden mehrfachen Ionisationsschritten in bedeutender Anzahl zu erzeugen. Die Eigenschaften dieser zweifach ionisierten Zustände ist insbesondere relevant für die Strahlungsschäden bei Beugungsexperimenten mit kohärenter Röntgenstrahlung zur Bildgebung einzelner Moleküle. In dieser Arbeit wird der Auger Zerfall doppelt K-Schalen ionisierter Moleküle mittels quantenchemischer ab-initio Methoden untersucht. Zur Beschreibung des emittierten Auger Elektrons im kontinuierlichen Energiespektrum wird dabei die Ein-Zentrums Methode verwendet, in der die elektronische Wellenfunktion auf einem radialen Gitter beschrieben wird unter Verwendung von sphärischen Harmonischen. Wie anhand desWassermoleküls gezeigt wird, ergeben sich durch die Doppel-K-Loch induzierte Protonendynamik in dem Auger Spektrum ausgeprägte Flanken im höherenergetischen Teil jeder Spektralspitze. Die Lebensdauer von Doppel-K-Schalen Löchern in Molekülen ist deutlich verringert im Vergleich zu einfachen K-Löchern durch die K-Loch induzierten Abschirmeffekte der Valenzelektronen. Dieser Mechanismus wird durch ein einfaches Modell erklärt aus dem eine Beziehung zwischen Zerfallsrate und Valenzelektronenpopulation abgeleitet. Mögliche Konsequenzen dieser Ergebnisse für Röntgenbeugungsexperimente sind: Erstens, auch für Röntgenpulse kürzer als 10fs wird das Beugungsbild durch die K-Loch induzierten Umstrukturierungen der Valenzelektronen beeinflußt. Zweitens, die Gesamt-Ionisationsrate ist erhöht aufgrund der schnelleren Neubesetzung der K-Löcher.
7

Interpretation and relativistic simulation of selected electronic transitions:decays of M-shell hole states in atomic Cr, Br and Rb

Keskinen, J. (Juho) 28 November 2019 (has links)
Abstract In this thesis electronic structure of atomic chromium, rubidium and bromine are studied experimentally and theoretically through transitions and decay processes originating from selected M-shell hole states. The experiments are conducted with traditional methods of electron spectroscopy as well as more recent multicoincidence methods using pulsed synchrotron radiation and a magnetic bottle spectrometer. The observed electronic transitions are theoretically simulated with multiconfiguration Dirac-Fock method. Finally, the calculations are used to interpret the measured spectra to investigate the energy level structure and electron dynamics of the studied elements. / Original papers Original papers are not included in the electronically distributed version of the thesis. Keskinen, J., Huttula, S.-M., Mäkinen, A., Patanen, M., &amp; Huttula, M. (2015). Experimental and theoretical study of 3p photoionization and subsequent Auger decay in atomic chromium. Radiation Physics and Chemistry, 117, 209–216. https://doi.org/10.1016/j.radphyschem.2015.08.018 Keskinen, J., Lablanquie, P., Penent, F., Palaudoux, J., Andric, L., Cubaynes, D., … Jänkälä, K. (2017). Initial-state-selected MNN Auger spectroscopy of atomic rubidium. Physical Review A, 95(4). https://doi.org/10.1103/physreva.95.043402 http://jultika.oulu.fi/Record/nbnfi-fe201706207380 Keskinen, J., Jänkälä, K., Huttula, S.-M., Kaneyasu, T., Hikosaka, Y., Shigemasa, E., … Lablanquie, P. (2019). Auger decay of the 3d hole in the isoelectronic series of Br*, Kr⁺ and Rb²⁺. Manuscript in preparation.
8

Molecular double core hole spectroscopy : the role of electronic and nuclear dynamics / Spectroscopie de molécules doublement ionisées en couche de coeur : le rôle de la dynamique

Oberli, Solène 20 February 2018 (has links)
Les propriétés de la matière peuvent être révélées en faisant interagir la matière avec la lumière. En particulier, les spectroscopies à rayons X sont largement utilisées pour étudier la structure électronique d'éléments isolés ou d'atomes et molécules dans un environnement donné, et sont spécifiques de la nature de l'élément. De telles capacités démontrent leur potentiel en terme d'analyse chimique. Le développement récent des lasers à électrons libres à rayons X (XFEL en anglais) permet de sonder la matière avec une résolution spatiale (angström) et temporelle (femtoseconde) hors de portée avec les lasers optiques et les sources synchrotron de troisième génération. Les caractéristiques uniques du rayonnement XFEL sont exploitées dans plusieurs domaines de recherche, comme la chimie, la physique et la biologie. En particulier, la spectroscopie de double trous a connu un nouvel essor avec l'apparition des XFELs. Les états double trous possèdent deux lacunes électroniques en couche interne. En régime XFEL, ces états sont produits principalement par l'absorption séquentielle de deux photons X d'une impulsion laser ultracourte (femtoseconde) et intense, avec la formation d'un état intermédiaire simplement ionisé. Au cours de cette thèse, nous avons étudié la formation de molécules doublement ionisées en couche de cœur, induite par l'absorption séquentielle de deux photons X d'une impulsion laser femtoseconde et intense. D'une part, nous mettons en évidence l'influence de la dynamique nucléaire sur les processus d'ionisation en couche de cœur. D'autre part, nous démontrons qu'un contrôle actif sur la compétition entre l'absorption de photon et le déclin Auger dans l'état intermédiaire simplement ionisé est possible en faisant varier la durée de l'impulsion laser. Afin d'atteindre ces objectifs, nous avons développé pour la première fois un modèle dépendant du temps et purement quantique, qui traite explicitement la dynamique nucléaire ainsi que l'absorption de photon, tandis que le déclin Auger est décrit de manière phénoménologique. Ce travail de recherche théorique ouvre la voie à une description complète de la formation de molécules doublement ionisées en couche de cœur en régime XFEL. / Properties of matter can be revealed through its interaction with light. In particular, X-ray based spectroscopies are widely used to gain insight into the local electronic structure of isolated elements or atoms or molecules embedded in an environment, and are element specific. Such capabilities evidence their potential as tools for chemical analysis. The recent development of X-ray free electron laser (XFEL) allows to probe matter with spatial (angström) and temporal (femtosecond) resolutions out of reach so far with optical lasers or third generation synchrotron sources. The unique characteristics of XFEL radiation are exploited in several areas, such as chemistry, physics and biology. In particular, double core hole spectroscopy, whose sensitivity is considerably enhanced compared to conventional X-ray spectroscopies, is on the rise. Double core hole states, also referred as hollow states, are characterized by two electron vacancies in the inner shell(s). In the XFEL regime, the dominant pathway to produce them is the sequential absorption of two x-ray photons, where a singly core ionized species is produced in the intermediate step. In the present thesis, we tackle the study of double core hole state formation induced by the sequential absorption of two x-ray photons from an intense femtosecond laser pulse. On one hand, we bring forward the influence of the nuclear dynamics on core photoionization processes. On the other hand, we demonstrate that an active control over the competition between photoabsorption and Auger decay in the intermediate single core hole state is possible by varying the laser pulse duration. In pursuing these goals, we develop for the first time a time-dependent full quantum model treating both the photon absorption and the nuclear dynamics explicitly as well as the Auger decay phenomenologically. This purely theoretical work paves the road for a complete description of molecular double core hole state formation in th XFEL regime.
9

Dynamik endlicher Vielteilchen-Systeme in intensiven Röntgenlaserpulsen

Gnodtke, Christian 21 April 2011 (has links) (PDF)
Die Arbeit beschäftigt sich mit der neuartigen Wechselwirkung von intensiven und ultrakurzen Röntgenlaserpulsen mit atomaren endlichen Systemen, die derzeit durch eine neue Generation von Lichtquellen, sogenannter X-ray free-electron laser (XFEL) zugänglich gemacht wird. Eine der Vorzeigeanwendungen der XFELs ist die zukünftig potentiell mögliche Strukturbestimmung endlicher nicht-periodischer Systeme mit atomarer Auflösung durch Diffraktion. Hierbei stellt sich der durch die hohe notwendige Pulsintensität bedingte Strahlenschaden an dem System als limitierender Faktor heraus, der ein detailliertes Verständnis der durch Photoabsorption induzierten Dynamik voraussetzt, um diese Art der "Mikroskopie" zum Erfolg zu führen. Wir verwenden daher zur Beschreibung der laserinduzierten Dynamik ein mikroskopisches Modell in dem Photoionisation und inner-atomare Zerfallsprozesse durch quantenmechanische Raten behandelt werden und die Dynamik der Ionen und energetischen Elektronen in einer klassischen Molekulardynamik-Simulation erfasst wird. Eine Neuerung gegenüber bisherigen Modellen ist die Berücksichtigung der Ionisation von Atomen durch starke interne Felder in dem hoch-geladenen System. Durch eine Anwendung des Modells auf Neoncluster kann gezeigt werden, dass diese Feldionisation einen wichtigen Beitrag zur laserinduzierten Dynamik darstellt. Sie führt zur ultraschnellen Formation eines Nanoplasmas, welches sich im Kern des geladenen Clusters ansammelt und dort die Ladung der Clusterionen neutralisert. Hierdurch wird eine vorzeitige Coulomb-Explosion des Clusters vermieden. Es wird dargelegt, dass dieser Mechanismus der lokalen Schadensreduzierung durch die Einbettung des Clusters in ein Heliumtröpfchen auf den gesamten Cluster ausgeweitet werden kann, da durch Feldionisation und Migration von Elektronen die vollständige laserbedingte Aufladung des Clusters auf das Heliumtröpfchen transferiert wird. Eine Analyse der resultierenden Diffraktionsmuster bestätigt, dass der reduzierte Strahlenschaden am Cluster den Anwendungsbereich für Diffraktionsexperimente erheblich ausweitet. Kürzlich wurde am SLAC National Accelerator Laboratory der erste XFEL in Betrieb genommen. Eine Modifikation des Modells auf dort bereits erzielbare Wellenlängen wird genutzt um Vorhersagen über das Photoabsorptionsverhalten, aus dem alle weiteren Schäden folgen, an kleinen Neoncluster zu treffen. Hiermit lassen sich bereits jetzt durch den Vergleich zu Experimenten die wichtigen Schadensmechanismen und ihre theoretische Beschreibung testen. Es wird ferner das interessante Relaxationsverhalten des durch massive Photoionisation in XFEL-Strahlung erzeugten Elektronenplasmas untersucht. Diese neuartige Anregung erfolgt auf einer Femtosekunden-Zeitskala und produziert eine hohe Dichte an energetischen Elektronen. Wir beschreiben dieses Plasma durch ein generisches Modell seiner Vielteilchen-Dynamik. Hierbei kann der gesamte Parameterraum des Modells in vier Klassen unterteilt werden, die sich nach Anregungsgrad, der den Elektronenverlust des Plasmas regelt, und Anregungsdauer, die die transiente Dynamik beeinflusst, unterscheiden. Speziell der Bereich starker Anregung bei gleichzeitig kurzer Anregungsdauer zeigt ein interessantes neues Verhalten, bei dem sich eine Equilibrierung des Systems im Kontinuum andeutet.
10

Dynamik endlicher Vielteilchen-Systeme in intensiven Röntgenlaserpulsen

Gnodtke, Christian 08 December 2010 (has links)
Die Arbeit beschäftigt sich mit der neuartigen Wechselwirkung von intensiven und ultrakurzen Röntgenlaserpulsen mit atomaren endlichen Systemen, die derzeit durch eine neue Generation von Lichtquellen, sogenannter X-ray free-electron laser (XFEL) zugänglich gemacht wird. Eine der Vorzeigeanwendungen der XFELs ist die zukünftig potentiell mögliche Strukturbestimmung endlicher nicht-periodischer Systeme mit atomarer Auflösung durch Diffraktion. Hierbei stellt sich der durch die hohe notwendige Pulsintensität bedingte Strahlenschaden an dem System als limitierender Faktor heraus, der ein detailliertes Verständnis der durch Photoabsorption induzierten Dynamik voraussetzt, um diese Art der "Mikroskopie" zum Erfolg zu führen. Wir verwenden daher zur Beschreibung der laserinduzierten Dynamik ein mikroskopisches Modell in dem Photoionisation und inner-atomare Zerfallsprozesse durch quantenmechanische Raten behandelt werden und die Dynamik der Ionen und energetischen Elektronen in einer klassischen Molekulardynamik-Simulation erfasst wird. Eine Neuerung gegenüber bisherigen Modellen ist die Berücksichtigung der Ionisation von Atomen durch starke interne Felder in dem hoch-geladenen System. Durch eine Anwendung des Modells auf Neoncluster kann gezeigt werden, dass diese Feldionisation einen wichtigen Beitrag zur laserinduzierten Dynamik darstellt. Sie führt zur ultraschnellen Formation eines Nanoplasmas, welches sich im Kern des geladenen Clusters ansammelt und dort die Ladung der Clusterionen neutralisert. Hierdurch wird eine vorzeitige Coulomb-Explosion des Clusters vermieden. Es wird dargelegt, dass dieser Mechanismus der lokalen Schadensreduzierung durch die Einbettung des Clusters in ein Heliumtröpfchen auf den gesamten Cluster ausgeweitet werden kann, da durch Feldionisation und Migration von Elektronen die vollständige laserbedingte Aufladung des Clusters auf das Heliumtröpfchen transferiert wird. Eine Analyse der resultierenden Diffraktionsmuster bestätigt, dass der reduzierte Strahlenschaden am Cluster den Anwendungsbereich für Diffraktionsexperimente erheblich ausweitet. Kürzlich wurde am SLAC National Accelerator Laboratory der erste XFEL in Betrieb genommen. Eine Modifikation des Modells auf dort bereits erzielbare Wellenlängen wird genutzt um Vorhersagen über das Photoabsorptionsverhalten, aus dem alle weiteren Schäden folgen, an kleinen Neoncluster zu treffen. Hiermit lassen sich bereits jetzt durch den Vergleich zu Experimenten die wichtigen Schadensmechanismen und ihre theoretische Beschreibung testen. Es wird ferner das interessante Relaxationsverhalten des durch massive Photoionisation in XFEL-Strahlung erzeugten Elektronenplasmas untersucht. Diese neuartige Anregung erfolgt auf einer Femtosekunden-Zeitskala und produziert eine hohe Dichte an energetischen Elektronen. Wir beschreiben dieses Plasma durch ein generisches Modell seiner Vielteilchen-Dynamik. Hierbei kann der gesamte Parameterraum des Modells in vier Klassen unterteilt werden, die sich nach Anregungsgrad, der den Elektronenverlust des Plasmas regelt, und Anregungsdauer, die die transiente Dynamik beeinflusst, unterscheiden. Speziell der Bereich starker Anregung bei gleichzeitig kurzer Anregungsdauer zeigt ein interessantes neues Verhalten, bei dem sich eine Equilibrierung des Systems im Kontinuum andeutet.

Page generated in 0.0381 seconds