• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling and predicting time series of social activities with fat-tailed distributions

Miotto, José Maria 13 October 2016 (has links) (PDF)
Fat-tailed distributions, characterized by the relation P(x) ∝ x^{−α−1}, are an emergent statistical signature of many complex systems, and in particular of social activities. These fat-tailed distributions are the outcome of dynamical processes that, contrary to the shape of the distributions, is in most cases are unknown. Knowledge of these processes’ properties sheds light on how the events in these fat tails, i.e. extreme events, appear and if it is possible to anticipate them. In this Thesis, we study how to model the dynamics that lead to fat-tailed distributions and the possibility of an accurate prediction in this context. To approach these problems, we focus on the study of attention to items (such as videos, forum posts or papers) in the Internet, since human interactions through the online media leave digital traces that can be analysed quantitatively. We collected four sets of time series of online activity that show fat tails and we characterize them. Of the many features that items in the datasets have, we need to know which ones are the most relevant to describe the dynamics, in order to include them in a model; we select the features that show high predictability, i.e. the capacity of realizing an accurate prediction based on that information. To quantify predictability we propose to measure the quality of the optimal forecasting method for extreme events, and we construct this measure. Applying these methods to data, we find that more extreme events (i.e. higher value of activity) are systematically more predictable, indicating that the possibility of discriminate successful items is enhanced. The simplest model that describes the dynamics of activity is to relate linearly the increment of activity with the last value of activity recorded. This starting point is known as proportional effect, a celebrated and widely used class of growth models in complex systems, which leads to a distribution of activity that is fat-tailed. On the one hand, we show that this process can be described and generalized in the framework of Stochastic Differential Equations (SDE) with Normal noise; moreover, we formalize the methods to estimate the parameters of such SDE. On the other hand, we show that the fluctuations of activity resulting from these models are not compatible with the data. We propose a model with proportional effect and Lévy-distributed noise, that proves to be superior describing the fluctuations around the average of the data and predicting the possibility of an item to become an extreme event. However, it is possible to model the dynamics using more than just the last value of activity; we generalize the growth models used previously, and perform an analysis that indicates that the most relevant variable for a model is the last increment in activity. We propose a new model using only this variable and the fat-tailed noise, and we find that, in our data, this model is superior to the previous models, including the one we proposed. These results indicate that, even if present, the relevance of proportional effect as a generative mechanism for fat-tailed distributions is greatly reduced, since the dynamical equations of our models contain this feature in the noise. The implications of this new interpretation of growth models to the quantification of predictability are discussed along with applications to other complex systems.
2

Aspects of many-body systems on a kagome lattice

Roychowdhury, Krishanu 12 January 2016 (has links) (PDF)
Strongly correlated systems on geometrically frustrated lattices can stabilize a large number of interesting phases that includes a wide array of novel Mott insulators in both bosonic and electronic systems. Charge fluctuations in a Mott insulator are suppressed due to strong mutual interaction among the particles. The presence of frustration is of particular importance as the physics it offers is often rich, unexpectedly complicated, and continues to raise many open questions. The thesis elucidates some of these issues on a kagome lattice where strong interactions among the particles in the Mott phase impose non-trivial local constraints depending on the filling fraction on the lattice. These Mott insulators, in addition to featuring unusual magnetic and/or charge ordering, can also harbor topologically ordered states of quantum matter, e.g., resonating valence bond liquids realized in certain quantum dimer models on non-bipartite lattices. The dimer models can be regarded as low-energy effective theories for different types of bosonic models in the strong-coupling limit. Exploring this connection is a central theme of this thesis with the aim of realizing novel strongly correlated ground states. Past studies of these models have revealed the existence of various ordered and disordered phases with distinct signatures. Among these low-energy phases, the presence of a stable topological liquid at a particular point, known as Rokhsar-Kivelson point, in the phase diagram is notable. The classical versions of the dimer model are also known to have garnered a vast interest in various fields ranging from problems of pure mathematical origin to ones in physical chemistry as well as statistical physics. Pioneered by Kasteleyn, several analytical works came forward to exactly calculate the partition function of the problem from which other physical observables can be derived. Classical numerical methods are extensively applied to these models to verify the analytical predictions. We introduce a new classical algorithm here to compute the correlation functions of a classical dimer model on a square (bipartite) and a triangular (non-bipartite) lattice based on a tensor network construction. The method, called tensor network renormalization group, turns out to be a powerful tool for simulating short-ranged gapped systems as inferred from our results benchmarked against the classical Monte-Carlo technique and compared with past analytical studies. One should note that the quantum dimer model at the Rokhsar-Kivelson point can also be described as an infinite temperature canonical ensemble of classical dimers because of the particular structure of the ground state which is an equal weight superposition in the configuration manifold. The geometry of the lattice plays a pivotal role in deciding the nature of the phases that arise in the dimer models. Many physical properties of the dimer liquid phase can be extracted in the simple classical setting which certainly allows for a deep understanding of the classical models to be developed. The liquid phase is gapped on non-bipartite lattices and gapless on bipartite lattices, which is reflected in the decay of correlation functions with spatial distances. In general on non-bipartite lattices, the topological nature of the dimer liquid is characterized by a Z2 topological order which survives even when the model is perturbed away from the Rokhsar-Kivelson point. Stability of this liquid phase not only depends on the lattice geometries but notably on dimer concentrations also. In this context, we focus on a particular variant of the dimer model on a triangular lattice which is known as the quantum fully packed loop model. The model is composed of nonintersecting closed loops made of dimers and governed by the same Hamiltonian as the quantum dimer model. The loop model provides an effective low-energy description of a strongly correlated bosonic system at 1/3 filling on the kagome lattice. The corresponding Bose-Hubbard Hamiltonian consists of nearest-neighbor hopping and all possible repulsive interactions within a hexagonal plaquette. Conspicuous features of the zero-temperature phase diagram for this model include (i) presence of a stable Z2 liquid even without any Rokhsar-Kivelson potential term (in distinction to the standard quantum dimer model), and (ii) an unconventional phase transition from the liquid phase to a novel crystalline phase that has nematic order (dubbed lattice nematic). For a deeper understanding of the physics, a mapping to an Ising gauge theory is presented. The gauge theoretic description provides a useful way to predict the nature of the quantum phase transition to lie in the O(3) universality class. Finally a fermionic model at the same 1/3 filling is considered in which the ground state exhibits a number of exotic local orderings resulting from the spin-charge interplay of electrons. The Hamiltonian comprises nearest-neighbor hopping, strong on-site Coulomb interaction, and repulsive interaction terms only between nearest-neighbors. In the strong correlation limit, this fermionic problem maps to a two-color fully packed loop model – a model in which the loop segments carry an additional quantum number as color on a honeycomb lattice. The effective theory is governed by coherent three-particle ring exchanges and nearest-neighbor antiferromagnetic spin exchanges. The competition between these two leads to a phase diagram composed of a novel plaquette ordered state (known as the plaquette phase) that undergoes phase transition to a new kind of charge ordered state which we call a short loop phase. From our numerical analysis, we conclude that the plaquette phase features an unusual antiferromagnetic order with gapless spin excitations while the charge-ordered state is subjugated by spin fluctuations of localized electrons arranged in small hexagonal loops on the kagome lattice.
3

Magnetic Properties Studied by Density Functional Calculations Including Orbital Polarisation Corrections

Neise, Carsten 20 July 2011 (has links) (PDF)
Mit Hilfe der Dichtefunktionaltheorie wurden magnetische Eigenschaften an 3d Elementen und Legierungen und 5f Verbindungen untersucht. Dabei wurde auf die Wichtigkeit von Orbitalpolarisationskorrekturen eingegangen und diese näher erörtert. Im ersten Anwendungsteil wurden magnetische Momente und die Magnetokristalline Anisotropie Energie an 3d Elementen untersucht. Des Weiteren wurden FeCo Legierungen als mögliche Bestandteile in der Festplattenindustrie diskutiert. Im letzten Abschnitt wurden Uranverbindungen in Hinsicht auf Ihre Orbitalpolarisation untersucht.
4

Dynamik endlicher Vielteilchen-Systeme in intensiven Röntgenlaserpulsen

Gnodtke, Christian 21 April 2011 (has links) (PDF)
Die Arbeit beschäftigt sich mit der neuartigen Wechselwirkung von intensiven und ultrakurzen Röntgenlaserpulsen mit atomaren endlichen Systemen, die derzeit durch eine neue Generation von Lichtquellen, sogenannter X-ray free-electron laser (XFEL) zugänglich gemacht wird. Eine der Vorzeigeanwendungen der XFELs ist die zukünftig potentiell mögliche Strukturbestimmung endlicher nicht-periodischer Systeme mit atomarer Auflösung durch Diffraktion. Hierbei stellt sich der durch die hohe notwendige Pulsintensität bedingte Strahlenschaden an dem System als limitierender Faktor heraus, der ein detailliertes Verständnis der durch Photoabsorption induzierten Dynamik voraussetzt, um diese Art der "Mikroskopie" zum Erfolg zu führen. Wir verwenden daher zur Beschreibung der laserinduzierten Dynamik ein mikroskopisches Modell in dem Photoionisation und inner-atomare Zerfallsprozesse durch quantenmechanische Raten behandelt werden und die Dynamik der Ionen und energetischen Elektronen in einer klassischen Molekulardynamik-Simulation erfasst wird. Eine Neuerung gegenüber bisherigen Modellen ist die Berücksichtigung der Ionisation von Atomen durch starke interne Felder in dem hoch-geladenen System. Durch eine Anwendung des Modells auf Neoncluster kann gezeigt werden, dass diese Feldionisation einen wichtigen Beitrag zur laserinduzierten Dynamik darstellt. Sie führt zur ultraschnellen Formation eines Nanoplasmas, welches sich im Kern des geladenen Clusters ansammelt und dort die Ladung der Clusterionen neutralisert. Hierdurch wird eine vorzeitige Coulomb-Explosion des Clusters vermieden. Es wird dargelegt, dass dieser Mechanismus der lokalen Schadensreduzierung durch die Einbettung des Clusters in ein Heliumtröpfchen auf den gesamten Cluster ausgeweitet werden kann, da durch Feldionisation und Migration von Elektronen die vollständige laserbedingte Aufladung des Clusters auf das Heliumtröpfchen transferiert wird. Eine Analyse der resultierenden Diffraktionsmuster bestätigt, dass der reduzierte Strahlenschaden am Cluster den Anwendungsbereich für Diffraktionsexperimente erheblich ausweitet. Kürzlich wurde am SLAC National Accelerator Laboratory der erste XFEL in Betrieb genommen. Eine Modifikation des Modells auf dort bereits erzielbare Wellenlängen wird genutzt um Vorhersagen über das Photoabsorptionsverhalten, aus dem alle weiteren Schäden folgen, an kleinen Neoncluster zu treffen. Hiermit lassen sich bereits jetzt durch den Vergleich zu Experimenten die wichtigen Schadensmechanismen und ihre theoretische Beschreibung testen. Es wird ferner das interessante Relaxationsverhalten des durch massive Photoionisation in XFEL-Strahlung erzeugten Elektronenplasmas untersucht. Diese neuartige Anregung erfolgt auf einer Femtosekunden-Zeitskala und produziert eine hohe Dichte an energetischen Elektronen. Wir beschreiben dieses Plasma durch ein generisches Modell seiner Vielteilchen-Dynamik. Hierbei kann der gesamte Parameterraum des Modells in vier Klassen unterteilt werden, die sich nach Anregungsgrad, der den Elektronenverlust des Plasmas regelt, und Anregungsdauer, die die transiente Dynamik beeinflusst, unterscheiden. Speziell der Bereich starker Anregung bei gleichzeitig kurzer Anregungsdauer zeigt ein interessantes neues Verhalten, bei dem sich eine Equilibrierung des Systems im Kontinuum andeutet.

Page generated in 0.024 seconds