1 |
Aldeídos alifáticos lineares triplete: formação enzimática e efeitos em estruturas biológicas / Linear aliphatic triplet aldehydes: enzymatic formation and effects in biological structuresCampa, Ana 25 September 1984 (has links)
Peroxidase de rábano (\"horseradish peroxidase - HRP), atuando como uma oxidase frente a substratos apropriados, catalisa a formação de espécies eletronicamente excitadas triplete. Os produtos obtidos são os esperados da clivagem de um intermediário 1,2-dioxetânico hipotético. Espécies tripletes geradas enzimaticamente são capazes de transferir energia a vários aceptores incluindo macromoléculas tais como: fitocromo, RNA, DNA e proteínas, além de organelas como cloroplastos. Acompanhamos a oxidação aeróbica de aldeídos alifáticos lineares (C2-C6) catalisada pela HRP; esta reação gera o aldeído inferior (Cn-1) no estado excitado triplete e ácido fórmico. Dois aspectos principais são abordados neste trabalho: (i) análise dos resultados em base ao comprimento da cadeia carbônica do substrato (C2 → C6) e (ii) a procura de emissões sensitizadas em estruturas biológicas (cloroplastos e microsomas). - Oxidação aeróbica dos aldeídos alifáticos lineares C2-C6 catalisada pela HRP. Corantes xantênicos e clorofila a solubilizada em micelas foram utilizados para monitorar estados eletronicamente excitadas geradas pela oxidação aeróbica dos aldeídos alifáticos lineares catalisada pela HRP. Quando eosina é o aceptor fluorescente, máxima emissão ocorre com butanal. Este resultado é discutido em conecçao com o fato de que uma série de efeitos biológicos de ácidos alifáticos lineares são máximos com o ácido butírico. A possível paticipação de estados excitados no processo que desencadeia as atividades biológicas deste ácido é sugerida. - TransferêncIa de energia para cloroplastos. Aldeídos alifáticos lineares (C2-C6) promovem emissão em cloroplastos na região de fluorescência de clorofila. Esta habilidade deve provavelmente constituir um caso de \"luminescência escura\" (\"dark luminescence\") . Se HRP estiver presente o aldeído (Cn) é oxidado ao homólogo inferior (Cn-1) no estado triplete, o qual sensitiza direta e/ou indiretamente a fluorescência de clorofila. Clorofila excitada por este processo é incapaz de reduzir um aceptor de Hill. - Quimioluminescência de microsomas expostos à oxidação aeróbica de aldeídos lineares catalisada pela HRP. Microsomas expostos ao sistema propanal/HRP/O2 desenvolvem luminescência de baixa intensidade. Este processo emissivo é distinto daquele originário durante a peroxidação de lipídeos uma vez que: (i ) a emissão se situa próxima a 560 nm e não na região espectral do vermelho (como esperado para a emissão bimol de oxigênio singlete) e (ii) não há formação de malonaldeído. Acetaldeído triplete parecer ser a espécie responsável pela indução deste processo através da excitação de algum componente microsomal, possivelmente uma flavoproteína. / Horseradish peroxidase (HRP), acting as anoxidase upon appropriate substrates, promotes the formation of electronically excite triplet species. The products obtained are those which would be expected from the cleavage of a hypothetical 1,2 dioxetane intermediate. Enzyme-generated triplet species are able to transfer energy to several acceptors, including macromolecules such as phytochrome, RNA, DNA and proteins, as well as to organeles such as chloroplasts. In the present study, we investigated the HRP-catalyzed aerobic oxidation of linear aliphatic aldehydes (C2 to C6), a reaction which generates the next lower aldehyde in the triplet state and formic acid. Two main aspects were emphasized in this work: (i ) the dependence of the results of the length of the carbonic chain of the substrate (C2 to C6) and (ii) the possibility of inducing sensitized emission from biological structures (chloroplasts and microsomes). HRP-catalyzed aerobic oxidation of aliphatic aldehydes. Xanthene dyes and micelle-solubilized chlorophyll-a were used to monitor the electronically excited species generated by the peroxidase-catalyzed aerobic oxidation of C2-C6 linear aldehydes. Maximal emission occurs with butanal as substrate and eosine as the fluorescent acceptor. This result is discussed in connection with the fact that the multiple biological effects of short chain aliphatic acids are maximal for butyric acid. Our observations strengthen the case for a possible role of excited state formation in the biological activity butyrate. Energy transfer to chloroplasts Linear aldehydes trigger red emission from chloroplasts. If horseradish peroxidase is also present, the aldehyde is oxidized to the next lower homolog in the triplet state, which in turn sensitizes (directly or indirectly) chlorophyll fluorescence. This phenomenon probably is a case of \"dark luminescence\"; the chlorophyll excited by this process is unable to reduce a Hill acceptor. MIicrosomal luminescence elicited by enzymatic systems that generate triplet species. Microsomes exposed to the propanal/HRP/02 system develop a weak luminescence. The underlying process is distinct from that occuring during lipid peroxidation because the emission intensity peaks at around 560 nm rather than in the red (as would be expected for bimol singlet oxygen emission) and no malonaldehyde is formed. Triplet acetaldehyde appears to be responsible for initiating the process, which in turn leads to excitation of a component of microsomes, possibly a flavoprotein.
|
2 |
Aldeídos alifáticos lineares triplete: formação enzimática e efeitos em estruturas biológicas / Linear aliphatic triplet aldehydes: enzymatic formation and effects in biological structuresAna Campa 25 September 1984 (has links)
Peroxidase de rábano (\"horseradish peroxidase - HRP), atuando como uma oxidase frente a substratos apropriados, catalisa a formação de espécies eletronicamente excitadas triplete. Os produtos obtidos são os esperados da clivagem de um intermediário 1,2-dioxetânico hipotético. Espécies tripletes geradas enzimaticamente são capazes de transferir energia a vários aceptores incluindo macromoléculas tais como: fitocromo, RNA, DNA e proteínas, além de organelas como cloroplastos. Acompanhamos a oxidação aeróbica de aldeídos alifáticos lineares (C2-C6) catalisada pela HRP; esta reação gera o aldeído inferior (Cn-1) no estado excitado triplete e ácido fórmico. Dois aspectos principais são abordados neste trabalho: (i) análise dos resultados em base ao comprimento da cadeia carbônica do substrato (C2 → C6) e (ii) a procura de emissões sensitizadas em estruturas biológicas (cloroplastos e microsomas). - Oxidação aeróbica dos aldeídos alifáticos lineares C2-C6 catalisada pela HRP. Corantes xantênicos e clorofila a solubilizada em micelas foram utilizados para monitorar estados eletronicamente excitadas geradas pela oxidação aeróbica dos aldeídos alifáticos lineares catalisada pela HRP. Quando eosina é o aceptor fluorescente, máxima emissão ocorre com butanal. Este resultado é discutido em conecçao com o fato de que uma série de efeitos biológicos de ácidos alifáticos lineares são máximos com o ácido butírico. A possível paticipação de estados excitados no processo que desencadeia as atividades biológicas deste ácido é sugerida. - TransferêncIa de energia para cloroplastos. Aldeídos alifáticos lineares (C2-C6) promovem emissão em cloroplastos na região de fluorescência de clorofila. Esta habilidade deve provavelmente constituir um caso de \"luminescência escura\" (\"dark luminescence\") . Se HRP estiver presente o aldeído (Cn) é oxidado ao homólogo inferior (Cn-1) no estado triplete, o qual sensitiza direta e/ou indiretamente a fluorescência de clorofila. Clorofila excitada por este processo é incapaz de reduzir um aceptor de Hill. - Quimioluminescência de microsomas expostos à oxidação aeróbica de aldeídos lineares catalisada pela HRP. Microsomas expostos ao sistema propanal/HRP/O2 desenvolvem luminescência de baixa intensidade. Este processo emissivo é distinto daquele originário durante a peroxidação de lipídeos uma vez que: (i ) a emissão se situa próxima a 560 nm e não na região espectral do vermelho (como esperado para a emissão bimol de oxigênio singlete) e (ii) não há formação de malonaldeído. Acetaldeído triplete parecer ser a espécie responsável pela indução deste processo através da excitação de algum componente microsomal, possivelmente uma flavoproteína. / Horseradish peroxidase (HRP), acting as anoxidase upon appropriate substrates, promotes the formation of electronically excite triplet species. The products obtained are those which would be expected from the cleavage of a hypothetical 1,2 dioxetane intermediate. Enzyme-generated triplet species are able to transfer energy to several acceptors, including macromolecules such as phytochrome, RNA, DNA and proteins, as well as to organeles such as chloroplasts. In the present study, we investigated the HRP-catalyzed aerobic oxidation of linear aliphatic aldehydes (C2 to C6), a reaction which generates the next lower aldehyde in the triplet state and formic acid. Two main aspects were emphasized in this work: (i ) the dependence of the results of the length of the carbonic chain of the substrate (C2 to C6) and (ii) the possibility of inducing sensitized emission from biological structures (chloroplasts and microsomes). HRP-catalyzed aerobic oxidation of aliphatic aldehydes. Xanthene dyes and micelle-solubilized chlorophyll-a were used to monitor the electronically excited species generated by the peroxidase-catalyzed aerobic oxidation of C2-C6 linear aldehydes. Maximal emission occurs with butanal as substrate and eosine as the fluorescent acceptor. This result is discussed in connection with the fact that the multiple biological effects of short chain aliphatic acids are maximal for butyric acid. Our observations strengthen the case for a possible role of excited state formation in the biological activity butyrate. Energy transfer to chloroplasts Linear aldehydes trigger red emission from chloroplasts. If horseradish peroxidase is also present, the aldehyde is oxidized to the next lower homolog in the triplet state, which in turn sensitizes (directly or indirectly) chlorophyll fluorescence. This phenomenon probably is a case of \"dark luminescence\"; the chlorophyll excited by this process is unable to reduce a Hill acceptor. MIicrosomal luminescence elicited by enzymatic systems that generate triplet species. Microsomes exposed to the propanal/HRP/02 system develop a weak luminescence. The underlying process is distinct from that occuring during lipid peroxidation because the emission intensity peaks at around 560 nm rather than in the red (as would be expected for bimol singlet oxygen emission) and no malonaldehyde is formed. Triplet acetaldehyde appears to be responsible for initiating the process, which in turn leads to excitation of a component of microsomes, possibly a flavoprotein.
|
3 |
Tight-binding approximations to time-dependent density functional theory: A fast approach for the calculation of electronically excited statesRüger, Robert, van Lenthe, Erik, Heine, Thomas, Visscher, Lucas 19 June 2018 (has links)
We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.
|
4 |
Development of A Cryogenic Drift Cell Spectrometer and Methods for Improving the Analytical Figures of Merit for Ion Mobility-Mass Spectrometry AnalysisMay, Jody C. 2009 August 1900 (has links)
A cryogenic (325-80 K) ion mobility-mass spectrometer was designed and
constructed in order to improve the analytical figures-of-merit for the chemical analysis
of small mass analytes using ion mobility-mass spectrometry. The instrument
incorporates an electron ionization source, a quadrupole mass spectrometer, a uniform
field drift cell spectrometer encased in a cryogenic envelope, and an orthogonal
geometry time-of-flight mass spectrometer. The analytical benefits of low temperature
ion mobility are discussed in terms of enhanced separation ability, ion selectivity and
sensitivity. The distinction between resolving power and resolution for ion mobility is
also discussed. Detailed experimental designs and rationales are provided for each
instrument component. Tuning and calibration data and methods are also provided for
the technique.
Proof-of-concept experiments for an array of analytes including rare gases
(argon, krypton, xenon), hydrocarbons (acetone, ethylene glycol, methanol), and halides
(carbon tetrachloride) are provided in order to demonstrate the advantages and limitations of the instrument for obtaining analytically useful information. Trendline
partitioning of small analyte ions based on chemical composition is demonstrated as a
novel chemical analysis method. The utility of mobility-mass analysis for mass selected
ions is also demonstrated, particularly for probing the ion chemistry which occurs in the
drift tube for small mass ions.
As a final demonstration of the separation abilities of the instrument, the
electronic states of chromium and titanium (ground and excited) are separated with low
temperature. The transition metal electronic state separations demonstrated here are at
the highest resolution ever obtained for ion mobility methods. The electronic
conformational mass isomers of methanol (conventional and distonic) are also partially
separated at low temperature. Various drift gases (helium, neon, and argon) are explored
for the methanol system in order to probe stronger ion-neutral interaction potentials and
effectuate higher resolution separations of the two isomeric ions. Finally, two versatile
ion source designs and a method for axially focusing ions at low pressure (1-10 torr)
using electrostatic fields is presented along with some preliminary work on the ion
sources.
|
Page generated in 0.1203 seconds