• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization and modification of the mechanical and surface properties at the nanoscale

Tam, Enrico 03 December 2009 (has links)
In the past two decades much effort has been put in the characterization of the mechanical and surface properties at the nano-scale in order to conceive reliable N/MEMS (Nano and Micro ElectroMechanical Systems) applications. Techniques like nanoindentation, nanoscratching, atomic force microscopy have become widely used to measure the mechanical and surface properties of materials at sub-micro or nano scale. Nevertheless, many phenomena such us pile-up and pop-in as well as surface anomalies and roughness play an important role in the accurate determination of the materials properties. The first goal of this report is to study the infulence of these sources of data distortion on the experimental data. The results are discussed in the first experimental chapter. On the other hand, conceptors would like to adapt/tune the mechanical and surface properties as a function of the required application so as to adapt them to the industrial need. Coatings are usually applied to materials to enhance performances and reliability such as better hardness and elastic modulus, chemical resistance and wear resistance. In this work, the magnetron sputtering technique is used to deposit biocompatible thin layers of different compositions (titanium carbide, titanium nitride and amorphous carbon) over a titanium substrate. The goal of this second experimental part is the study of the deposition parameters influence on the resulting mechanical and surface properties. New materials such as nanocrystal superlattices have recently received considerable attention due to their versatile electronic and optical properties. However, this new class of material requires robust mechanical properties to be useful for technological applications. In the third and last experimental chapter, nanoindentation and atomic force microscopy are used to characterize the mechanical behavior of well ordered lead sulfide (PbS) nanocrystal superlattices. The goal of this last chapter is the understanding of the deformation process in order to conceive more reliable nanocrystal superlattices.
2

Electrostatic forces on a CO molecule : Simulating an AFM image

Wadensjö, Alexandra January 2018 (has links)
In atomic force microscopy (AFM), the measured force between tip and substrate is used to produce images with subatomic resolution. In this thesis, plausible electrostatic interactions between tip-substrate is studied and compared with the experimental results in the report Vibrations of a molecule in an external force field by Okabayashi et al.. A simplified model gives by hand that the interaction between substrate and tip is dominated by a point charge - point charge relation due to the interatomic distances in AFM. We find that the electrostatic interaction can reproduce the experiment down to a limit of z ~ 3 Å. Further, we find that the tip interacts with the sample as a point charge with an induced dipole moment obtained by the electric field of the substrate. By analyzing electrostatic forces and compare them with the results in the Okabayashi et al. report, the AFM images in the report could be reproduced. / <p>Rättande lärare: Cecilia Holmqvist</p>
3

Controlling Colloidal Stability using Highly Charged Nanoparticles

Herman, David J. 27 February 2015 (has links)
This dissertation focused on the potential use of highly charged nanoparticles to stabilize dispersions of weakly charged microparticles. The experimental components of the project centered on a model colloidal system containing silica microparticles at the isoelectric point where the suspensions are unstable and prone to flocculation. The stability of the silica suspensions was studied in the presence of highly charged nanoparticles. Initial experiments used polystyrene latex with either sulfate or amidine surface groups. Effective zeta potentials were measured with nanoparticle concentrations ranging from 0.001% to 0.5% vol. Adsorption levels were determined through direct SEM imaging of the silica microparticles, showing that the nanoparticles directly adsorbed to the microparticles (amidine more than sulfate), producing relatively large effective zeta potentials. However, stability experiments showed that the latex nanoparticles did not stabilize the silica but merely provided a reduction in overall flocculation rate. It was concluded that the zeta potential was an insufficient predictor of stability as there was still sufficient patchiness on the surface to allow for the silica surfaces to aggregate. Experiments using zirconia and alumina nanoparticles did achieve effective stabilization; both types stabilized the silica suspensions for longer than the observation period of approximately 15 hours. Stability was observed at concentrations of 10^-4% to 1.0% (zirconia) and 10^-2% vol. (alumina). These particles adsorbed directly to the microparticles (confirmed via SEM) and produced increasing effective zeta potentials with increasing nanoparticle concentrations. The adsorption resulted in significant electrostatic repulsion that was determined to be effectively irreversible using colloidal probe AFM. The improved stabilizing ability was attributed to the increased van der Waals attraction between the oxide nanoparticles (compared to polystyrene). Finally, an unexpected result of the CP-AFM force measurements showed that the repulsive forces between a nanoparticle-coated particle and plate lacked the normal dependence on the radius of the probe as predicted by the Derjaguin approximation. The forces observed in nanoparticle suspensions were virtually identical for 5 µm and 30 µm probes. Based on calculations of the shear rate in the gap, it was theorized that this phenomenon may have resulted from the shearing of adsorbed particles from the surfaces, which leads to similar interaction geometries for the two probe sizes. / Ph. D.
4

Determinação da carga eletrostática em aerossóis e seu efeito na filtração de gases.

Rodrigues, Marcos Vinícius 06 May 2005 (has links)
Made available in DSpace on 2016-06-02T19:55:42Z (GMT). No. of bitstreams: 1 TeseMVR.pdf: 2984636 bytes, checksum: 7a4e26302aeada36a4e2b3594d857fdc (MD5) Previous issue date: 2005-05-06 / Universidade Federal de Sao Carlos / It has been shown that the presence of electrostatic charges in particles affects significantly the performance of a filter, both increasing collection efficiency and reducing pressure drop. The aim of the present work is to verify the influence of the charge level on collection efficiency during the first stages of filtration. A charge classifier was used to measure the charge level of the aerosol as a function of particle diameter. The filtration unit was made of polypropylene with 600 g/m2 weighing, and had a diameter of 0.047 m and a thickness of 0.0026 m. The solid used was a phosphate rock (density 2940 kg/m3 and average Stokes diameter of 3.40 mm). The aerosol was dispersed by a TSI Venturi type generator, model SSPD 3433. The particle charging was achieved by a corona. In all the tests a linear relation between the particles acquired charge and their diameter was observed. A gradual increase of the charge level was observed with an increase of the tension in the corona charger (0, -3, -6 kV). The filtration results indicated that the global collection efficiency of the filter was very sensitive to the variation of the charge level of the particles. Both efficiency and pressure drop increased when the charge level increased. During the tests, the small increase in pressure drop was evidence that the cake had not yet been formed. / A presença de cargas eletrostáticas em partículas a serem removidas tem se mostrado um fator que contribui sensivelmente para o desempenho do meio filtrante, tanto no aumento da eficiência de coleta quanto na diminuição de perda de carga do filtro. O presente trabalho tem como objetivo verificar a influência do nível de cargas eletrostáticas das partículas na eficiência de coleta do filtro durante os estágios iniciais da filtração. Para a medição do nível de cargas, foi utilizado o classificador de cargas eletrostáticas, equipamento capaz de medir o nível de cargas elétricas de um aerossol em função do diâmetro da partícula. A unidade de filtração utilizada apresentava 0,047 m de diâmetro. Como meio filtrante, foi utilizado tecido de polipropileno de 0,0026 m de espessura e gramatura 600 g/m2. O sólido utilizado foi um concentrado fosfático (densidade: 2940 Kg/m3 e diâmetro de Stokes médio de 3,40 mm). O aerossol foi disperso por um gerador tipo venturi marca TSI modelo SSPD 3433, e a eletrização das partículas feita através de um carregamento tipo corona. Em todos os testes de determinação do nível de carga das partículas foi observado comportamento linear entre o nível de carga adquirida pela partícula e o diâmetro. Houve aumento gradativo do nível de carregamento das partículas com o aumento da tensão no carregador tipo corona (0, -3, -6 kV). Os resultados de filtração indicaram que a eficiência global de coleta do filtro apresentou-se muito sensível à variação do nível de cargas das partículas. Houve um aumento da eficiência e um decréscimo da queda de pressão mediante a eletrização das partículas. Durante a realização dos testes houve um aumento muito pequeno da queda de pressão evidenciando a não formação de torta de filtração.
5

Méthode de Perturbation pour la Modélisation par Éléments Finis des Systèmes Électrostatiques en Mouvement - Application aux MEMS Électrostatiques

Boutaayamou, Mohamed 05 March 2009 (has links)
La modélisation par éléments finis des conducteurs en mouvement nécessite généralement des calculs successifs et le remalliage de certaines régions. Une modélisation 3D de géométries complexes par les techniques classiques nécessite dès lors de gros efforts en terme de temps de calcul. Dans cette thèse, une méthode originale basée sur une approche par sous-problèmes, appelée méthode de perturbation, a été développée. Utilisant la méthode des éléments finis, cette technique consiste à subdiviser un problème entier en sous-problèmes. La complexité du problème initial est par conséquent diminuée en ne se concentrant que sur les zones les plus pertinentes. Appliquée aux systèmes en mouvement, la méthode de perturbation permet d'exploiter les résolutions antérieures au lieu d'effectuer un nouveau calcul pour chaque position. L'analyse par la méthode de perturbation des microsystèmes électromécaniques (MEMS) électrostatiques comprenant des parties en déplacement ou en déformation est en outre considérée dans ce travail. Il est notamment question de démontrer l'implication naturelle de cette approche pour des simulations plus efficaces et plus précises des MEMS électrostatiques.
6

Characterization and modification of the mechanical and surface properties at the nanoscale

Tam, Enrico 03 December 2009 (has links)
In the past two decades much effort has been put in the characterization of the mechanical<p>and surface properties at the nano-scale in order to conceive reliable N/MEMS<p>(Nano and Micro ElectroMechanical Systems) applications. Techniques like nanoindentation,<p>nanoscratching, atomic force microscopy have become widely used to measure<p>the mechanical and surface properties of materials at sub-micro or nano scale. Nevertheless,<p>many phenomena such us pile-up and pop-in as well as surface anomalies<p>and roughness play an important role in the accurate determination of the materials<p>properties. The first goal of this report is to study the infulence of these sources of data<p>distortion on the experimental data. The results are discussed in the first experimental<p>chapter.<p>On the other hand, conceptors would like to adapt/tune the mechanical and surface<p>properties as a function of the required application so as to adapt them to the industrial<p>need. Coatings are usually applied to materials to enhance performances and reliability<p>such as better hardness and elastic modulus, chemical resistance and wear resistance.<p>In this work, the magnetron sputtering technique is used to deposit biocompatible thin<p>layers of different compositions (titanium carbide, titanium nitride and amorphous<p>carbon) over a titanium substrate. The goal of this second experimental part is the<p>study of the deposition parameters influence on the resulting mechanical and surface<p>properties.<p>New materials such as nanocrystal superlattices have recently received considerable<p>attention due to their versatile electronic and optical properties. However, this new<p>class of material requires robust mechanical properties to be useful for technological<p>applications. In the third and last experimental chapter, nanoindentation and atomic<p>force microscopy are used to characterize the mechanical behavior of well ordered lead<p>sulfide (PbS) nanocrystal superlattices. The goal of this last chapter is the understanding<p>of the deformation process in order to conceive more reliable nanocrystal<p>superlattices. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.114 seconds