Spelling suggestions: "subject:"elektrischen bahnen""
1 |
60 Jahre Professur Elektrische BahnenArnd, Stephan 19 December 2014 (has links) (PDF)
Anläßlich des Festkolloquiums 60 Jahre Elektrische Bahnen stellt sich die Professur vor. Es wird ein Überblick zur Geschichte der Professur gegeben.
|
2 |
60 Jahre Professur Elektrische Bahnen: "Nicht mit dem Strom schwimmen - mit dem Strom Fahren!"Arnd, Stephan January 2014 (has links)
Anläßlich des Festkolloquiums 60 Jahre Elektrische Bahnen stellt sich die Professur vor. Es wird ein Überblick zur Geschichte der Professur gegeben.
|
3 |
Dimensionierung elektrischer Bahnsysteme mit mehrkriteriellen genetischen Algorithmen / Design of electrical railway systems using multi-objective genetic algorithmsMethner, Sabine 21 February 2011 (has links) (PDF)
Im bisherigen Auslegungsprozess wird ein Bahnsystem in der Regel in Teilsysteme zerlegt, die nacheinander und für sich betrachtet entworfen werden. Das Verhalten des Gesamtsystems im geplanten täglichen Betrieb wird nur für wenige Varianten mittels Simulation überprüft. In dieser Arbeit wird der Ansatz vorgestellt, ein elektrisches Bahnsystem als Optimierungsaufgabe zu modellieren und diese mit einem geeigneten mathematischen Suchverfahren zu lösen, um Wechselwirkungen im Gesamtsystem bereits während der Dimensionierung berücksichtigen zu können. Zu diesem Zweck wird ein mehrkriterieller genetischer Algorithmus mit Zugfahrtsimulation und Netzberechnung gekoppelt, um ein für elektrische Bahnen entwickeltes Optimierungsmodell zu lösen. Am Beispiel einer realen Metrostrecke wird das Verfahren auf seine Eignung getestet und die erzielten Ergebnisse bewertet. / In the previous design process the electric railway system was subdivided into subsystems that are conceived one after the other and independent of each other. The performance of the complete railway system under realistic operation conditions can only be verified for some very few variants using simulation tools.
The paper presents an approach to formulate an electric railway system as a self-contained optimization problem solved by means of a mathematical optimization method in order to consider interactions within the system in the early stage of the design process. Therefore a multi-objective genetic algorithm is coupled with both train simulation and electrical network calculation solving an optimization model specially designed for electrical railway systems. The proposed method is tested on an actual metro system. The results of this case study are presented and evaluated.
|
4 |
Dimensionierung elektrischer Bahnsysteme mit mehrkriteriellen genetischen AlgorithmenMethner, Sabine 30 June 2010 (has links)
Im bisherigen Auslegungsprozess wird ein Bahnsystem in der Regel in Teilsysteme zerlegt, die nacheinander und für sich betrachtet entworfen werden. Das Verhalten des Gesamtsystems im geplanten täglichen Betrieb wird nur für wenige Varianten mittels Simulation überprüft. In dieser Arbeit wird der Ansatz vorgestellt, ein elektrisches Bahnsystem als Optimierungsaufgabe zu modellieren und diese mit einem geeigneten mathematischen Suchverfahren zu lösen, um Wechselwirkungen im Gesamtsystem bereits während der Dimensionierung berücksichtigen zu können. Zu diesem Zweck wird ein mehrkriterieller genetischer Algorithmus mit Zugfahrtsimulation und Netzberechnung gekoppelt, um ein für elektrische Bahnen entwickeltes Optimierungsmodell zu lösen. Am Beispiel einer realen Metrostrecke wird das Verfahren auf seine Eignung getestet und die erzielten Ergebnisse bewertet. / In the previous design process the electric railway system was subdivided into subsystems that are conceived one after the other and independent of each other. The performance of the complete railway system under realistic operation conditions can only be verified for some very few variants using simulation tools.
The paper presents an approach to formulate an electric railway system as a self-contained optimization problem solved by means of a mathematical optimization method in order to consider interactions within the system in the early stage of the design process. Therefore a multi-objective genetic algorithm is coupled with both train simulation and electrical network calculation solving an optimization model specially designed for electrical railway systems. The proposed method is tested on an actual metro system. The results of this case study are presented and evaluated.
|
Page generated in 0.0581 seconds