• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 4
  • Tagged with
  • 14
  • 14
  • 14
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elektrochemische Abscheidung von Bruschitschichten auf Titan in Gegenwart von Kristallisationsinhibitoren zur Steuerung von Kristallitgröße und biologischer Reaktion / Brushite coatings on titanium by electrochemical deposition in the presence of crystallization inhibitors to control of crystallite size and biological reaction

Wettstein, Lars January 2020 (has links) (PDF)
Es erfolgte eine elektrochemische Abscheidung von Bruschitschichten auf Titan in Gegenwart von Kristallisationsinhibitoren. Dabei wurden die Kristallisationsinhibitoren Zitronensäure, treta-Natriumdiphosphat-Decahydrat und Phytinsäure verwendet und die entstandenen Schichten mit denen ohne Inhibitorzugabe verglichen. Um das Ausmaß der Inhibierung zu verifizieren, wurde die Masse aller Schichten gemessen, welche für die Inhibition mit Zitronensäure und Phytinsäure abnahm und für Natriumdiphosphat zunahm. Die kristallographische Zusammensetzung der mit und ohne Inhibierung abgeschiedenen Schichten wurde mit Hilfe der Röntgendiffraktometrie bestimmt und zeigte, dass sich reine Bruschitschichten mit unterschiedlichem amorphem Anteil abschieden. Die daraus entstandenen Werte lieferten zugleich die Informationen über die einzelnen Kristallitgrößen innerhalb der Schichten. Über den Einfluss der Inhibitoren auf die Schichtmorphologie gaben rasterelektronenmikroskopische Aufnahmen weiteren Aufschluss. Die Inhibition verursachte teils mit Rissen durchzogene Schichten, deren Kristallformationen sich von Standardelektrolyt unterschieden. Ausgewählte Proben wurden unter verschiedenen Bedingungen desinfiziert bzw. sterilisiert und nachfolgend erneut gewogen und mittels Röntgendiffraktogrammetrie und Rasterelektronenmikroskopie analysiert. Nach der Desinfektion entstanden reine Bruschitschichten, die an Masse verloren aber trotzdem die typischen Kristallformationen zeigten. Die Sterilisation führte zur Umwandlung von Bruschit in Monetit und Hydroxylapatit. Des Weiteren wurde die biologische Reaktion der Schichten auf humane fötale Osteoblasten-Zelllinien zur Überprüfung der Zellverträglichkeit ermittelt. Die entstandenen Ergebnisse waren nicht verwertbar und enthielt sehr hohe Standardabweichungen. / Brushite coatings were deposited on titanium by electrochemical deposition in the presence of various crystallization inhibitors such as citric acid, treta-sodium diphosphate decahydrate and phytic acid. The resulting layers were compared with those without inhibitor addition. To verify the extent of inhibition, the mass of all layers was measured, which decreased for inhibition with citric acid and phytic acid and increased for sodium diphosphate. The crystallographic composition of the layers deposited with and without inhibition was determined by X-ray diffraction and showed pure brushite caotings with different amorphous content. The resulting values also provided information about the individual crystallite sizes within the layers. Scanning electron microscope images provided further information about the influence of the inhibitors of the layer morphology. The inhibition caused layers partly interspersed with cracks, whose crystal formations differed from the standard electrolyte. Selected samples were disinfected or sterilized under various conditions and subsequently reweighed and analyzed by X-ray diffraction and scanning electron microscopy. After disinfection, pure brushite caotings were formed, which lost mass but still showed the typical crystal formations. Sterilization led to the transformation of brushite into monetite and hydroxyapatite. Furthermore, the biological response of the layers to human fetal osteoblast cell lines was determined to test cell compatibility. The results obtained were not usable and contained very high standard deviations.
2

Development of a Thermoelectric Characterization Platform for Electrochemically Deposited Materials

Barati, Vida 05 January 2021 (has links)
Die erfolgreiche Optimierung der Leistung von thermoelektrischen Materialien, die durch zT beschrieben wird, ist entscheidend für ihre Anwendung für das Wärmemanagement und die Kühlung von Leistungselektronik. Im Gegensatz zu Bulk-Proben bleibt die vollständige zT-Charakterisierung von Dünn- und Dickfilmmaterialien eine große Herausforderung. Dies ist insbesondere relevant für Filme, die durch elektrochemische Abscheidung synthetisiert werden, wo das Material auf eine elektrisch leitende Schicht abgeschieden wird. In dieser Dissertation habe ich ein Transport-Device für eine vollständige zTCharakterisierung von elektrochemisch abgeschiedenen Materialien entwickelt, während der Einfluss der elektrisch leitenden Schicht, sowie des Substrats beseitigt wird. Die zT-Charakterisierung erfolgt unter Verwendung eines auf einer freistehenden Membran suspendierten thermoelektrischen Materials innerhalb des entwickelten Transport-Devices, die durch eine Kombination von Fotolithografie und Mikrostrukturierungstechnik zusammen mit Ätzprozessen hergestellt wurde. Für die Messung der Wärmeleitfähigkeit habe ich eine eindimensionale, analytische, stationäre Methode eingesetzt, welche mit Hilfe von dreidimensionalen Finite-Elemente-Simulationen bestätigt wurde. Darüber hinaus habe ich die temperaturabhängigen thermoelektrischen Eigenschaften von zwei Dickschichten mit Hilfe des entwickelten Devices untersucht und mit Bulk-Proben und Dünnfilmen verglichen. Auf diese Weise konnte die Validität des Transport-Devices nachgewiesen werden. Neben der Optimierung von mikro-thermoelektrischen Materialien, die mit dem Transport- Device charakterisiert werden, ist die Leistung von thermoelektrischen Devices von den Faktoren Design, Geometrie und Konstruktion beeinflusst. Daher habe ich den Einfluss der Geometrie auf die Leistung eines elektrochemisch hergestellten mikrothermoelektrischen Generators mit Hilfe einer Finite-Elemente-Simulation untersucht.
3

Charakterisierung und Optimierung elektrochemisch abgeschiedener Kupferdünnschichtmetallisierungen für Leitbahnen höchstintegrierter Schaltkreise

Stangl, Marcel 12 August 2008 (has links) (PDF)
Die Entwicklung der Mikroelektronik wird durch eine fortschreitende Miniaturisierung der Bauelemente geprägt. Infolge einer Reduzierung der Querschnittflächen von Leitbahnstrukturen erhöht sich die elektrische Leistungsdichte und das Metallisierungssystem bestimmt zunehmend die Übertragungsgeschwindigkeiten. Kupfer repräsentiert hierbei das verbreitetste Leitbahnmaterial und wird vorwiegend mittels elektrochemischer Abscheidung in vergrabene Damaszen-Strukturen eingebracht. Die vorliegende Dissertation beschreibt Möglichkeiten für eine Optimierung von Kupferleitbahnen für höchstintegrierte Schaltkreise. Von besonderem Interesse sind hierbei die Gefügequalität und der Reinheitsgrad. Es erfolgen umfangreiche werkstoffanalytische und elektrochemische Untersuchungen zur Charakterisierung von Depositionsmechanismen, des Einbaus von Fremdstoffen, des Mikrogefüges nach der Abscheidung und der Mikrogefügeumwandlung. In einem abschließenden Forschungsschwerpunkt werden Kupfer-Damaszen-Teststrukturen mit unterschiedlichen Gehalten nichtmetallischer Verunreinigungen hergestellt und entsprechenden Lebensdauerexperimenten unterzogen. Hierdurch gelingt eine Evaluierung des Einflusses jener Verunreinigungen auf die Elektromigrationsbeständigkeit von Kupferleitbahnen. Die Arbeit umfasst daher das gesamte Spektrum von der Grundlagenforschung bis zur Applikation von elektrochemisch abgeschiedenen Kupferdünnschichtmetallisierungen.
4

Elektrochemisch hergestellte Fe-Pd-Schichten und Nanodrähte - Morphologie, Struktur und magnetische Eigenschaften

Hähnel, Veronika 22 May 2015 (has links) (PDF)
Mit Fe-Pd-Legierungen nahe der Zusammensetzung Fe70Pd30 kann man aufgrund des thermischen oder magnetischen Formgedächtniseffekts große Dehnungen erzeugen. Daher sind sie für Mikro- und Nanoaktoren sowie Sensoren von großem wissenschaftlichen und technologischen Interesse. Im Vergleich zu Massivmaterial und dünnen Schichten erwartet man für eindimensionale Geometrien wie Nanodrähte deutlich höhere Arbeitsfrequenzen und Dehnungen. Zur Herstellung von Nanodrähten eignet sich die elektrochemische Abscheidung in selbstordnende nanoporöse Membranen als effizienteste Methode gegenüber lithographischen oder physikalischen Methoden. Um den Formgedächtniseffekt auch in Fe-Pd-Nanodrähten mit ca. 30 at.% Pd zu nutzen, werden in dieser Arbeit entsprechende Herstellungsbedingungen wie Elektrolytsystem, Abscheideparameter und Nachbehandlung herausgearbeitet. Die Zusammenhänge zwischen Abscheidebedingungen und Morphologie, lokaler Mikrostruktur, Struktur sowie magnetischen Eigenschaften werden untersucht und bewertet. Es wird gezeigt, dass Fe-Pd-Nanodrähte trotz der Kombination aus edlem und unedlem Metall elektrochemisch hergestellt werden können. Ein komplexierter Fe-Pd-Elektrolyt in Kombination mit optimierten alternierenden Abscheidepotentialen führt reproduzierbar zu durchgehenden, nahezu defektfreien Nanodrähten nahe der Zusammensetzung Fe70Pd30. Mit einer nachträglichen Wärmebehandlung erreicht man eine vollständige Umwandlung der Fe-Pd-Legierung von der kubisch raumzentrierten zur kubisch flächenzentrierten Struktur. Die erfolgreiche Herstellung dieser Nanodrähte stellt eine Schlüsselposition auf dem Weg zu formgedächtnisbasierten Nanoaktoren dar. In dieser Arbeit konnten wichtige Ansatzpunkte zur Strukturkontrolle während der elektrochemischen Abscheidung und somit zur Aktivierung des Formgedächtniseffekts identifiziert werden. / Fe-Pd alloys at about 30 at.% Pd allow obtaining high length changes or strains in the percent range due to thermal or magnetic shape memory effect. They are especially promising candidates for smart and intelligent materials in micro- and nanoactuators as well as sensors. In comparison to bulk materials and thin films the utilization of nanowires promises higher actuation frequencies and strains, which further heighten the scientific and technological interest. Electrodeposition within self-organized nanoporous templates is a very time efficient method to prepare even large arrays of Fe-Pd nanowires of different length and diameter compared to lithographic or physical methods. The aim of this work is to exhibit the preparation conditions such as electrolyte system, deposition parameter and post treatment for shape memory active Fe-Pd nanowires at about 30 at.% Pd. Correlations between morphology, local microstructure, structure and magnetic properties are investigated and evaluated. Fe-Pd nanowires are successfully prepared by electrodeposition despite the combination of noble Pd and less noble Fe metals. The usage of an electrolyte with complexed Fe and Pd ions and an optimized alternating potential deposition regime leads to continuous and almost defect free nanowires close to the composition Fe70Pd30. The complete transition from the bcc to fcc structure of the Fe-Pd alloy is achieved by an additional heat treatment. However, the successful preparation of these nanowires represents a key element towards nanoactuators based on shape memory alloys. Fundamental knowledge about electrochemical preparation of Fe-Pd nanowires is gained. Important starting points towards structure control during deposition and activation of the shape memory effect are identified.
5

Electrochemical Phase Formation of Ni and Ni-Fe Alloys in a Magnetic Field

Ispas, Adriana 02 November 2007 (has links) (PDF)
The aim of this work was to investigate the effects that a magnetic field can induce during the electrodeposition of Ni and Ni-Fe alloys. Special regard was given to mass transport controlled effects. Magnetic field effects on the nucleation and growth of ferromagnetic layers and on the properties of electrodeposited layers (like grain size, texture, morphology or roughness) were investigated. The influence of a magnetic field on the magnetic properties of Ni layers and on the composition of Ni-Fe alloys was also studied. Nucleation and growth of thin Ni layers on gold electrodes under a superimposed magnetic field were analysed in-situ with the Electrochemical Quartz Crystal Microbalance technique. Three theoretical models were chosen for characterizing the Ni nucleation: Scharifker-Hills (SH), Scharifker-Mostany (SM) and Heerman-Tarallo (HT). The AFM images proved that more nuclei appear in a magnetic field in the case that the Lorentz force and the natural convection act in the same direction. From all the models, the HT model gave the best agreement with the AFM results. When the Lorentz force and the natural convection act in the same direction, an increase of the Ni partial current with the magnetic field was obtained. When they act in opposite directions, the Ni current was influenced just at the beginning of deposition (first 10 seconds). At longer times, the magnetic field has no effect on the Ni current. However, the total current (jNi+jHER) decreases with the magnetic field. In the absence of a macroscopic MHD convection, the Ni current decreases with the magnetic field the first 10-15 seconds of deposition. On longer time scales no influence of the magnetic field could be noticed for this configuration. When the magnetic field was applied perpendicular to the electric current, an increase of the hydrogen evolution reaction (HER) with the magnetic flux density was noticed. Hydrogen reduction is mass transport controlled. Therefore, the magnetic field will increase the limiting current of the HER. Optical microscopy images showed that the hydrogen bubbles were circular in the absence of the MHD convection and that they presented a tail when a Lorentz force was present. The direction of the tail depends on the net force induced by the natural and MHD convections. The interplay between the natural and MHD convections proved to be important during Ni-Fe alloy deposition, too. When the Lorentz force and the natural convection act in the same direction, an increase of the Fe content of the alloys with the magnetic field was observed. When the Lorentz force was perpendicular to the natural convection, no significant changes were observed in the composition of the layers. The alloy composition did not change with the magnetic field when the electric current was parallel to the magnetic field lines. Two surfactants were used in the case that Ni was electrodeposited from a sulfamate bath: SDS and sulfirol 8. The Ni layers obtained from a sulfamate bath with sulfirol 8 presented larger grains compared to the layers deposited from a bath free of surfactants. This increase of the grain size was attributed to the incorporation of the surfactant in the deposit. Coarser layers were obtained in a magnetic field (applied perpendicular to the electric current) when the electrodeposition was done from an electrolyte with surfactants. The number of grains increased with the magnetic field for the Ni layers electrodeposited from a bath free of surfactants and for a bath with SDS. As a consequence, the grain size decreased. In the case of the electrolyte with sulfirol 8, the number of grains decreased with the magnetic field, and their size increased. For the Ni-Fe alloys, which contained less than 10 at% Fe, the preferred crystalline orientation changes from (220), in the absence of a magnetic field, to (111), (when the magnetic field was applied perpendicular to the electric current). When the magnetic field lines were parallel to the electric current, both the (111) and (220) textures were preferred in almost the same proportion. As a general conclusion of this work it can be said that by choosing the right experimental condition, one can improve the morphology and the properties of the deposited layers by applying a magnetic field. At the same time, the mass transport processes can be influenced by a magnetic field.
6

Elektrochemisch hergestellte Fe-Pd-Schichten und Nanodrähte - Morphologie, Struktur und magnetische Eigenschaften

Hähnel, Veronika 15 December 2014 (has links)
Mit Fe-Pd-Legierungen nahe der Zusammensetzung Fe70Pd30 kann man aufgrund des thermischen oder magnetischen Formgedächtniseffekts große Dehnungen erzeugen. Daher sind sie für Mikro- und Nanoaktoren sowie Sensoren von großem wissenschaftlichen und technologischen Interesse. Im Vergleich zu Massivmaterial und dünnen Schichten erwartet man für eindimensionale Geometrien wie Nanodrähte deutlich höhere Arbeitsfrequenzen und Dehnungen. Zur Herstellung von Nanodrähten eignet sich die elektrochemische Abscheidung in selbstordnende nanoporöse Membranen als effizienteste Methode gegenüber lithographischen oder physikalischen Methoden. Um den Formgedächtniseffekt auch in Fe-Pd-Nanodrähten mit ca. 30 at.% Pd zu nutzen, werden in dieser Arbeit entsprechende Herstellungsbedingungen wie Elektrolytsystem, Abscheideparameter und Nachbehandlung herausgearbeitet. Die Zusammenhänge zwischen Abscheidebedingungen und Morphologie, lokaler Mikrostruktur, Struktur sowie magnetischen Eigenschaften werden untersucht und bewertet. Es wird gezeigt, dass Fe-Pd-Nanodrähte trotz der Kombination aus edlem und unedlem Metall elektrochemisch hergestellt werden können. Ein komplexierter Fe-Pd-Elektrolyt in Kombination mit optimierten alternierenden Abscheidepotentialen führt reproduzierbar zu durchgehenden, nahezu defektfreien Nanodrähten nahe der Zusammensetzung Fe70Pd30. Mit einer nachträglichen Wärmebehandlung erreicht man eine vollständige Umwandlung der Fe-Pd-Legierung von der kubisch raumzentrierten zur kubisch flächenzentrierten Struktur. Die erfolgreiche Herstellung dieser Nanodrähte stellt eine Schlüsselposition auf dem Weg zu formgedächtnisbasierten Nanoaktoren dar. In dieser Arbeit konnten wichtige Ansatzpunkte zur Strukturkontrolle während der elektrochemischen Abscheidung und somit zur Aktivierung des Formgedächtniseffekts identifiziert werden. / Fe-Pd alloys at about 30 at.% Pd allow obtaining high length changes or strains in the percent range due to thermal or magnetic shape memory effect. They are especially promising candidates for smart and intelligent materials in micro- and nanoactuators as well as sensors. In comparison to bulk materials and thin films the utilization of nanowires promises higher actuation frequencies and strains, which further heighten the scientific and technological interest. Electrodeposition within self-organized nanoporous templates is a very time efficient method to prepare even large arrays of Fe-Pd nanowires of different length and diameter compared to lithographic or physical methods. The aim of this work is to exhibit the preparation conditions such as electrolyte system, deposition parameter and post treatment for shape memory active Fe-Pd nanowires at about 30 at.% Pd. Correlations between morphology, local microstructure, structure and magnetic properties are investigated and evaluated. Fe-Pd nanowires are successfully prepared by electrodeposition despite the combination of noble Pd and less noble Fe metals. The usage of an electrolyte with complexed Fe and Pd ions and an optimized alternating potential deposition regime leads to continuous and almost defect free nanowires close to the composition Fe70Pd30. The complete transition from the bcc to fcc structure of the Fe-Pd alloy is achieved by an additional heat treatment. However, the successful preparation of these nanowires represents a key element towards nanoactuators based on shape memory alloys. Fundamental knowledge about electrochemical preparation of Fe-Pd nanowires is gained. Important starting points towards structure control during deposition and activation of the shape memory effect are identified.
7

Charakterisierung und Optimierung elektrochemisch abgeschiedener Kupferdünnschichtmetallisierungen für Leitbahnen höchstintegrierter Schaltkreise

Stangl, Marcel 27 June 2008 (has links)
Die Entwicklung der Mikroelektronik wird durch eine fortschreitende Miniaturisierung der Bauelemente geprägt. Infolge einer Reduzierung der Querschnittflächen von Leitbahnstrukturen erhöht sich die elektrische Leistungsdichte und das Metallisierungssystem bestimmt zunehmend die Übertragungsgeschwindigkeiten. Kupfer repräsentiert hierbei das verbreitetste Leitbahnmaterial und wird vorwiegend mittels elektrochemischer Abscheidung in vergrabene Damaszen-Strukturen eingebracht. Die vorliegende Dissertation beschreibt Möglichkeiten für eine Optimierung von Kupferleitbahnen für höchstintegrierte Schaltkreise. Von besonderem Interesse sind hierbei die Gefügequalität und der Reinheitsgrad. Es erfolgen umfangreiche werkstoffanalytische und elektrochemische Untersuchungen zur Charakterisierung von Depositionsmechanismen, des Einbaus von Fremdstoffen, des Mikrogefüges nach der Abscheidung und der Mikrogefügeumwandlung. In einem abschließenden Forschungsschwerpunkt werden Kupfer-Damaszen-Teststrukturen mit unterschiedlichen Gehalten nichtmetallischer Verunreinigungen hergestellt und entsprechenden Lebensdauerexperimenten unterzogen. Hierdurch gelingt eine Evaluierung des Einflusses jener Verunreinigungen auf die Elektromigrationsbeständigkeit von Kupferleitbahnen. Die Arbeit umfasst daher das gesamte Spektrum von der Grundlagenforschung bis zur Applikation von elektrochemisch abgeschiedenen Kupferdünnschichtmetallisierungen.
8

Electrochemical Phase Formation of Ni and Ni-Fe Alloys in a Magnetic Field

Ispas, Adriana 31 August 2007 (has links)
The aim of this work was to investigate the effects that a magnetic field can induce during the electrodeposition of Ni and Ni-Fe alloys. Special regard was given to mass transport controlled effects. Magnetic field effects on the nucleation and growth of ferromagnetic layers and on the properties of electrodeposited layers (like grain size, texture, morphology or roughness) were investigated. The influence of a magnetic field on the magnetic properties of Ni layers and on the composition of Ni-Fe alloys was also studied. Nucleation and growth of thin Ni layers on gold electrodes under a superimposed magnetic field were analysed in-situ with the Electrochemical Quartz Crystal Microbalance technique. Three theoretical models were chosen for characterizing the Ni nucleation: Scharifker-Hills (SH), Scharifker-Mostany (SM) and Heerman-Tarallo (HT). The AFM images proved that more nuclei appear in a magnetic field in the case that the Lorentz force and the natural convection act in the same direction. From all the models, the HT model gave the best agreement with the AFM results. When the Lorentz force and the natural convection act in the same direction, an increase of the Ni partial current with the magnetic field was obtained. When they act in opposite directions, the Ni current was influenced just at the beginning of deposition (first 10 seconds). At longer times, the magnetic field has no effect on the Ni current. However, the total current (jNi+jHER) decreases with the magnetic field. In the absence of a macroscopic MHD convection, the Ni current decreases with the magnetic field the first 10-15 seconds of deposition. On longer time scales no influence of the magnetic field could be noticed for this configuration. When the magnetic field was applied perpendicular to the electric current, an increase of the hydrogen evolution reaction (HER) with the magnetic flux density was noticed. Hydrogen reduction is mass transport controlled. Therefore, the magnetic field will increase the limiting current of the HER. Optical microscopy images showed that the hydrogen bubbles were circular in the absence of the MHD convection and that they presented a tail when a Lorentz force was present. The direction of the tail depends on the net force induced by the natural and MHD convections. The interplay between the natural and MHD convections proved to be important during Ni-Fe alloy deposition, too. When the Lorentz force and the natural convection act in the same direction, an increase of the Fe content of the alloys with the magnetic field was observed. When the Lorentz force was perpendicular to the natural convection, no significant changes were observed in the composition of the layers. The alloy composition did not change with the magnetic field when the electric current was parallel to the magnetic field lines. Two surfactants were used in the case that Ni was electrodeposited from a sulfamate bath: SDS and sulfirol 8. The Ni layers obtained from a sulfamate bath with sulfirol 8 presented larger grains compared to the layers deposited from a bath free of surfactants. This increase of the grain size was attributed to the incorporation of the surfactant in the deposit. Coarser layers were obtained in a magnetic field (applied perpendicular to the electric current) when the electrodeposition was done from an electrolyte with surfactants. The number of grains increased with the magnetic field for the Ni layers electrodeposited from a bath free of surfactants and for a bath with SDS. As a consequence, the grain size decreased. In the case of the electrolyte with sulfirol 8, the number of grains decreased with the magnetic field, and their size increased. For the Ni-Fe alloys, which contained less than 10 at% Fe, the preferred crystalline orientation changes from (220), in the absence of a magnetic field, to (111), (when the magnetic field was applied perpendicular to the electric current). When the magnetic field lines were parallel to the electric current, both the (111) and (220) textures were preferred in almost the same proportion. As a general conclusion of this work it can be said that by choosing the right experimental condition, one can improve the morphology and the properties of the deposited layers by applying a magnetic field. At the same time, the mass transport processes can be influenced by a magnetic field.
9

Magnetic-field-assisted electrodeposition at conically structured metal layers

Huang, Mengyuan 24 June 2022 (has links)
Konische Mikro- und Nanostrukturen besitzen spezifische magnetische, superhydrophobe und elektrokatalytische Eigenschaften und sind deshalb von hohem Interesse für eine Vielzahl von Anwendungen. Eine einfache und kostengünstige Methode zur Synthese dieser strukturierten Schichten ist die elektrochemische Abscheidung. Neben dem Einsatz von Capping-Reagenzien (engl. Capping agents) könnten Magnetfelder das lokale Konuswachstum auf einer planaren Elektrode unterstützen. In der vorliegenden Dissertation wird die Elektroabscheidung an konisch strukturierten Metallschichten in Magnetfeldern untersucht. Je nach Ausrichtung und Stärke des Magnetfeldes können die Lorentzkraft und die magnetische Gradientenkraft die Strömung des mit Metallionen angereicherten Elektrolyts in Richtung der Konusspitze gezielt antreiben. Folglich erhöht das Magnetfeld die lokale Abscheidungsrate und fördert das Konuswachstum. Für ein grundlegendes Verständnis des Effektes werden systematische numerische und theoretische Untersuchungen für die Elektroabscheidung an mm-großen Konen unterschiedlicher Materialien, Formen und Anordnungen unter verschiedenen elektrochemischen und magnetischen Bedingungen durchgeführt. Ein parallel zur Konusachse ausgerichtetes homogenes externes Magnetfeld erzeugt durch die Magnetisierung der ferromagnetischen Konen eine magnetische Gradientenkraft, die zu einer starken Unterstützung für das Konuswachstum führt. Dabei überwiegt sie oft gegenüber der Lorentzkraft und der Auftriebskraft, die durch Elektrodenreaktionen entsteht. Diese unterstützende Wirkung wird nur geringfügig abgeschwächt, wenn sich benachbarte Konusse einander annähern. Die numerischen Ergebnisse werden durch experimentelle Daten für verschiedene Konfigurationen und Abscheidungsparameter validiert. Um den Effekt der Magnetfelder zur Unterstützung des Wachstums kleinerer konischer Strukturen im Mikro- und Nanometerbereich zu ermitteln, werden die Skalengesetze für die Geschwindigkeiten der magnetisch angetriebenen lokalen Strömungen beim Verkleinern der Konusgröße aus numerischen Simulationen abgeleitet und durch eine analytische Lösung bestätigt. Obwohl die magnetische Gradientenkraft eine günstige Strömung bei ferromagnetischen Konussen erzeugt, limitieren die kleine Größe der Strömungsregion und die nahezu konstant verbleibende Dicke der Konzentrationsgrenzschicht die Unterstützung der Magnetfelder. Diese kann jedoch durch die Anwendung gepulster Ströme sowie moderat auch durch den Einsatz stärkerer Magnetfelder weiter erhöht werden. Weiterhin wird eine einfache Modellierung entwickelt, um den Einfluss von Capping-Reagenzien bei der Abscheidung von Nano-Strukturen numerisch zu simulieren. Experimentelle Resultate der von Partnern in Krakau durchgeführten Elektroabscheidung von nanostrukturierten Ni-Schichten in magnetischen Feldern werden mittels Simulationen sowohl globalen Zellströmung als auch der lokalen Strömung analysiert. Die Betrachtung beider Aspekte liefert eine Interpretation der experimentellen Ergebnisse und ermöglicht ein besseres Verständnis der Wirkung des capping agents. Zum Schluss wird der Einfluss der Wasserstoff-Nebenreaktion einbezogen. Die numerischen Ergebnisse zeigen, dass an der Konusspitze sitzende Wasserstoffblasen das Konuswachstum verringern können. Gleichzeig wird die durch die magnetischen Kräfte getriebene Strömung die Ablösung der Wasserstoffblase geringfügig verzögern. / Micro- and nano-sized conical structures possess specific magnetic, superhydrophobic and electrocatalytic properties and are therefore attractive for numerous applications. Among the various methods of manufacturing such structured layers, electrodeposition appears a simple and inexpensive method. Beside the use of capping agents, the application of magnetic fields could support the local growth of cones on a non-templated planar electrode. This dissertation investigates electrodeposition at conically structured metal layers in external magnetic fields. Depending on the direction and the intensity of the magnetic field, the Lorentz force and the magnetic gradient force can generate electrolyte flow and bring electrolyte enriched with metal ions towards the cone tips. As a result, the local deposition rate is increased and conical growth is promoted. In order to obtain a basic understanding of the magnetic field effects, systematic numerical and theoretical investigations are performed for electrodeposition at mm-sized cones of different materials, shapes and arrangements under different electrochemical and magnetic conditions. If a uniform external magnetic field is oriented parallel to the cone axis, the magnetic gradient force enabled by the magnetization of ferromagnetic cones provides a strong support for conical growth, thereby often dominating over the Lorentz force and the buoyancy force arising from electrode reactions. This supporting effect is only slightly mitigated when neighboring cones are getting closer. The numerical results shown are validated by experimental data for different configurations and deposition parameters. In order to explore the prospects of magnetic fields to enhance the growth of smaller, micro- and nanometer sized conical structures, scaling laws of the local flows driven by the magnetic forces are derived numerically and confirmed analytically for shrinking cone sizes. Although the magnetic gradient force can generate a beneficial flow at ferromagnetic cones, the small flow region and the nearly constant thickness of the concentration boundary layer limit the support of the magnetic field. Enhancements of the structuring effect are observed for pulsed deposition and, despite only moderately, at higher magnetic field intensities. Furthermore, a simplified modeling approach is developed to simulate the growth mechanism of nano-cones with respect to the influence of capping agents. Experimental results of the electrodeposition of Ni cones in magnetic fields obtained by partners in Krakow are analyzed by performing simulations of both the global cell flow and the local flows generated by magnetic fields of different orientations. This two-step approach provides an interpretation of the experimental results, and gives a deeper insight on how the capping agent influences the local growth. Finally, the impact of the hydrogen side reaction on the electrodeposition in magnetic fields is considered. The numerical results indicate that hydrogen bubbles sitting at the cone tips may damp conical growth, while the magnetic-field-driven flow imposes a weak stabilizing force on the bubble.
10

Nichtionische polyethoxylierte Tenside in methansulfonsauren Zinn- und Zinn-Silber-Elektrolyten / Nonionic polyethoxylated surfactant in methanesulfonic Tin- and Tin-Silver-Electrolytes

Wehner, Susanne 24 December 2005 (has links) (PDF)
The investigations are related to the influence of nonionic polyethoxylated surfactant on Tin- and Tin-Silver depositions. Cyclovoltammetry, electrochemical depositions in Hull cell, with quartz crystal microbalance, impedance spectroscopy, X-ray diffraction, REM and others were used as methods of characterization. / Die Untersuchungen befasssen sich mit dem Einfluss von nichtionischen polyethoxylierten Tenside auf die Zinn- und Zinn-Silber-Abscheidung, die durch Zyklovoltammetrie, Abscheidungen in der Hullzelle, mit der elektrochemischen Quarzmikrowaage, der Impedanzspektroskopie, Röntgendiffraktometrie, Rasterelektronenmikroskopie und Tensiometrie charakterisiert wurden.

Page generated in 0.3373 seconds