• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Charakterisierung und Optimierung elektrochemisch abgeschiedener Kupferdünnschichtmetallisierungen für Leitbahnen höchstintegrierter Schaltkreise

Stangl, Marcel 12 August 2008 (has links) (PDF)
Die Entwicklung der Mikroelektronik wird durch eine fortschreitende Miniaturisierung der Bauelemente geprägt. Infolge einer Reduzierung der Querschnittflächen von Leitbahnstrukturen erhöht sich die elektrische Leistungsdichte und das Metallisierungssystem bestimmt zunehmend die Übertragungsgeschwindigkeiten. Kupfer repräsentiert hierbei das verbreitetste Leitbahnmaterial und wird vorwiegend mittels elektrochemischer Abscheidung in vergrabene Damaszen-Strukturen eingebracht. Die vorliegende Dissertation beschreibt Möglichkeiten für eine Optimierung von Kupferleitbahnen für höchstintegrierte Schaltkreise. Von besonderem Interesse sind hierbei die Gefügequalität und der Reinheitsgrad. Es erfolgen umfangreiche werkstoffanalytische und elektrochemische Untersuchungen zur Charakterisierung von Depositionsmechanismen, des Einbaus von Fremdstoffen, des Mikrogefüges nach der Abscheidung und der Mikrogefügeumwandlung. In einem abschließenden Forschungsschwerpunkt werden Kupfer-Damaszen-Teststrukturen mit unterschiedlichen Gehalten nichtmetallischer Verunreinigungen hergestellt und entsprechenden Lebensdauerexperimenten unterzogen. Hierdurch gelingt eine Evaluierung des Einflusses jener Verunreinigungen auf die Elektromigrationsbeständigkeit von Kupferleitbahnen. Die Arbeit umfasst daher das gesamte Spektrum von der Grundlagenforschung bis zur Applikation von elektrochemisch abgeschiedenen Kupferdünnschichtmetallisierungen.
2

Charakterisierung und Optimierung elektrochemisch abgeschiedener Kupferdünnschichtmetallisierungen für Leitbahnen höchstintegrierter Schaltkreise

Stangl, Marcel 27 June 2008 (has links)
Die Entwicklung der Mikroelektronik wird durch eine fortschreitende Miniaturisierung der Bauelemente geprägt. Infolge einer Reduzierung der Querschnittflächen von Leitbahnstrukturen erhöht sich die elektrische Leistungsdichte und das Metallisierungssystem bestimmt zunehmend die Übertragungsgeschwindigkeiten. Kupfer repräsentiert hierbei das verbreitetste Leitbahnmaterial und wird vorwiegend mittels elektrochemischer Abscheidung in vergrabene Damaszen-Strukturen eingebracht. Die vorliegende Dissertation beschreibt Möglichkeiten für eine Optimierung von Kupferleitbahnen für höchstintegrierte Schaltkreise. Von besonderem Interesse sind hierbei die Gefügequalität und der Reinheitsgrad. Es erfolgen umfangreiche werkstoffanalytische und elektrochemische Untersuchungen zur Charakterisierung von Depositionsmechanismen, des Einbaus von Fremdstoffen, des Mikrogefüges nach der Abscheidung und der Mikrogefügeumwandlung. In einem abschließenden Forschungsschwerpunkt werden Kupfer-Damaszen-Teststrukturen mit unterschiedlichen Gehalten nichtmetallischer Verunreinigungen hergestellt und entsprechenden Lebensdauerexperimenten unterzogen. Hierdurch gelingt eine Evaluierung des Einflusses jener Verunreinigungen auf die Elektromigrationsbeständigkeit von Kupferleitbahnen. Die Arbeit umfasst daher das gesamte Spektrum von der Grundlagenforschung bis zur Applikation von elektrochemisch abgeschiedenen Kupferdünnschichtmetallisierungen.
3

Multiscale Simulation of Metallic Copper and Copper Oxide Atomic Layer Deposition from Cu Beta-diketonates

Hu, Xiao 24 July 2018 (has links)
Copper (Cu) interconnects have been widely used to replace aluminum in ultra-large-scale integration due to low resistivity and superior resistance to electromigration. Current processes for the fabrication of interconnects require thin Cu seed layers before the subsequent Cu filling by electrochemical deposition (ECD). It is crucial that these seed layers are coated conformally and smoothly in vias and trenches, ensuring that the ECD Cu films are free of voids. With the continuous scaling down of device dimensions, atomic layer deposition (ALD) has been considered as the most promising technology for making the Cu seed layers, because of its excellent conformality and precise thickness control. This dissertation is dedicated to the multiscale simulation of Cu ALD using the Cu beta-diketonate precursors (nBu3P)2Cu(acac) and Cu(acac)2. Different co-reactants (H, H2, H2O, O3 and wet O2) were investigated with respect to their application for the ALD of metallic Cu and Cu oxides. While Cu beta-diketonates have been widely applied in ALD, the mechanistic details of the surface reactions are still largely unknown. Ab initio calculations were performed to obtain the input data for reactive molecular dynamics (RMD) simulations and thermodynamic modeling, which were realized at the molecular-scale and macroscale, respectively. / Kupferleitbahnen werden in höchstintegrierten Schaltkreisen aufgrund des niedrigen spezifischen Widerstands und der sehr guten Beständigkeit gegen Elektromigration verwenden. Aktuelle Verfahren zur Leitbahnherstellung erfordern dünne Cu Keimschichten vor der anschließenden Cu Füllung durch die elektrochemische Abscheidung (ECD). Dabei ist es entscheidend, dass diese Keimschichten konform und glatt in den Vias und Gräben abgeschieden werden können, so dass die ECD Cu-Filme frei von Hohlräumen sind. Mit der weiteren Skalierung wird die Atomlagenabscheidung (ALD) mit ihrer hohen Konformalität und der ausgezeichneten Dickensteuerung als die vielversprechendste Technik zur Herstellung der Cu Keimschichten betrachtet. Die vorliegende Dissertation ist der Multiskalensimulation der ALD von metallischem Kupfer und Kupferoxiden aus Cu-beta-Diketonat Präkursoren (nBu3P)2Cu(acac) und Cu(acac)2 gewidmet. Verschiedene Koreaktanden H, H2, H2O, O3 und feuchtes O2 werden hinsichtlich ihrer Anwendung für die ALD von metallischem Kupfer oder Kupferoxid untersucht. Die Mechanismen der Oberflächenreaktionen dieser Präkursoren sind noch weitgehend unbekannt, obwohl die Cu Beta-Diketonate in der ALD bereits breite Verwendung finden. Ab-initio-Rechnungen wurden durchgeführt, um die Eingangsdaten für die reaktive Molekulardynamiksimulation und die thermodynamische Modellierung zu erhalten, die sowohl auf molekularer wie auch auf makroskopischer Ebene durchgeführt wurden.
4

Growth of carbon nanotubes on different support/catalyst systems for advanced interconnects in integrated circuits / Wachstum von Kohlenstoffnanoröhren auf verschiedenen Untergrund/Katalysator-Systemen für zukünftige Leitungsverbindungen in integrierten Schaltkreisen

Hermann, Sascha 15 November 2011 (has links) (PDF)
Since there is a continuous shrinking of feature sizes in ultra-large scale integrated (ULSI) circuits, requirements on materials and technology are going to rise dramatically in the near future. In particular, at the interconnect system this calls for new concepts and materials. Therefore, carbon nanotubes (CNTs) are considered as a promising material to replace partly or entirely metal interconnects in such devices. The present thesis aims to make a contribution to the CNT growth control with the thermal chemical vapor deposition (CVD) method and the integration of CNTs as vertical interconnects (vias) in ULSI circuits. Different support/catalyst systems are examined in processes for catalyst pretreatment and CNT growth. The investigations focus on the catalyst formation and the interactions at the interfaces. Those effects are related to the CNT growth. To get an insight into interactions at interfaces, film structure, composition, and CNT growth characteristics, samples are extensively characterized by techniques like AFM, SEM, TEM, XRD, XPS, and Raman spectroscopy. Screening studies on nanoparticle formation and CNT growth with the well known system SiO2/Ni are presented. This system is characterized by a weak support/catalyst interaction, which leads to undirected growth of multi-walled CNTs (MWCNTs). By contrast, at the Ta/Ni system a strong interaction causes a wetting of catalyst nanoparticles and vertically aligned MWCNT growth. At the system W/Ni a strong interaction at the interface is found as well, but there it induces Stranski-Krastanov catalyst film reformation upon pretreatment and complete CNT growth inhibition. Studies on the SiO2/Cr/Ni system reveal that Cr and Ni act as a bi-catalyst system, which leads to a novel nanostructure defined as interlayer CNT (ICNT) structure. The ICNT films are characterized by well crystallized vertically aligned MWCNTs, which grow out a Cr/Ni layer lifted off as a continuous and very smooth layer from the substrate with the growth. Besides, this nanostructure offers new possibilities for the integration of CNTs in different electronic applications. Based on the presented possibilities of manipulating CNT growth, an integration technology was derived to fabricate CNT vias. The technology uses a surface mediated site-selective CVD for the growth of MWCNTs in via structures. Developments are demonstrated with the fabrication of via test vehicles and the site-selective growth of MWCNTs in vias on 4 inch wafers. Furthermore, the known resistance problem of CNT vias, caused by too low CNT density, is addressed by a new approach. A CNT/metal heterostructure is considered, where the metal is implemented through atomic layer deposition (ALD). The first results of the coating of CNTs with readily reducible copper oxide nanoparticles are presented and discussed. / Aufgrund der kontinuierlichen Verkleinerung von Strukturen in extrem hoch integrierten (engl. Ultra-Large Scale Integration − ULSI) Schaltkreisen werden die Anforderungen an die Materialien und die Technologie in naher Zukunft dramatisch ansteigen. Besonders im Leitbahnsystem sind neue Materialien und Konzepte gefragt. Kohlenstoffnanoröhren (engl. Carbon Nanotubes − CNT) stellen hierbei ein vielversprechendes Material dar, um teilweise oder sogar vollständig metallische Leitbahnen zu ersetzen. Die vorliegende Arbeit liefert einen Beitrag zur CNT-Wachstumskontrolle mit der thermischen Gasphasenabscheidung (engl. Chemical Vapor Deposition − CVD) sowie der Integration von CNTs als vertikale Leitungsverbindungen (Via) in ULSI-Schaltkreisen. Verschiedene Untergrund/Katalysator-Systeme werden in Prozessen zur Katalysatorvorbehandlung sowie zum CNT-Wachstum betrachtet. Die Untersuchungen richten sich insbesondere auf die Katalysatorformierung und die Wechselwirkungen an den Grenzflächen. Diese werden mit dem CNT-Wachstum in Verbindung gebracht. Für Untersuchungen von Grenzflächeninteraktionen, Schichtstruktur, Zusammensetzung sowie CNT-Wachstumscharakteristik werden Analysen mit AFM, REM, TEM, XRD, XPS und Raman-Spektroskopie genutzt. Zunächst werden Voruntersuchungen an dem gut bekannten System SiO2/Ni zur Nanopartikelformierung und CNTWachstum vorgestellt. Dieses System ist gekennzeichnet durch eine schwache Wechselwirkung zwischen Untergrund und Katalysator sowie ungerichtetem Wachstum von mehrwandigen CNTs (MWCNTs). Im Gegensatz dazu hat bei dem System Ta/Ni eine starke Interaktion an der Grenzfläche eine Katalysatornanopartikelbenetzung und vertikales MWCNT-Wachstum zur Folge. Für das W/Ni-System gelten ebenfalls starke Interaktionen an der Grenzfläche. Bei diesem System wird allerdings eine Stranski-Krastanov-Schichtformierung des Katalysators und eine vollständige Unterbindung von CNT-Wachstum erreicht. Bei dem System SiO2/Cr/Ni agieren Cr und Ni als Bi- Katalysatorsystem. Dies führt zu einer neuartigen Nanostruktur, die als Zwischenschicht-CNT (engl. Interlayer Carbon Nanotubes − ICNTs) Struktur definiert wird. Die Schichten sind durch eine gute Qualität von gerichteten MWCNTs charakterisiert, die aus einer geschlossenen, sehr glatten und von den CNTs getragenen Cr/Ni-Schicht herauswachsen. Darüber hinaus bietet die Struktur neue Möglichkeiten für die Integration von CNTs in verschiedene elektronische Anwendungen. Auf der Grundlage der vorgestellten Manipulationsmöglichkeiten von CNT-Wachstum wurde eine Integrationstechnologie für CNTs in Vias abgeleitet. Der Ansatz ist eine oberflächeninduzierte selektive CVD von vertikal gerichteten MWCNTs in Via-Strukturen. Diese Technologie wird mit der Herstellung von einem Via-Testvehikel und dem selektiven CNT-Wachstum in Vias auf 4 Zoll Wafern demonstriert. Um das Widerstandsproblem von CNT-Vias, verursacht durch eine zu niedrige CNT-Dichte, zu reduzieren, wird eine Technologieerweiterung vorgeschlagen. Der Ansatz geht von einer CNT/Metall-Heterostruktur aus, bei der das Metall mit Hilfe der Atomlagenabscheidung (engl. Atomic Layer Deposition − ALD) implementiert wird. Es werden erste Ergebnisse zur CNT-Beschichtung mit reduzierbaren Kupferoxidnanopartikeln vorgestellt und diskutiert.
5

Growth of carbon nanotubes on different support/catalyst systems for advanced interconnects in integrated circuits: Growth of carbon nanotubes on different support/catalystsystems for advanced interconnects in integrated circuits

Hermann, Sascha 19 September 2011 (has links)
Since there is a continuous shrinking of feature sizes in ultra-large scale integrated (ULSI) circuits, requirements on materials and technology are going to rise dramatically in the near future. In particular, at the interconnect system this calls for new concepts and materials. Therefore, carbon nanotubes (CNTs) are considered as a promising material to replace partly or entirely metal interconnects in such devices. The present thesis aims to make a contribution to the CNT growth control with the thermal chemical vapor deposition (CVD) method and the integration of CNTs as vertical interconnects (vias) in ULSI circuits. Different support/catalyst systems are examined in processes for catalyst pretreatment and CNT growth. The investigations focus on the catalyst formation and the interactions at the interfaces. Those effects are related to the CNT growth. To get an insight into interactions at interfaces, film structure, composition, and CNT growth characteristics, samples are extensively characterized by techniques like AFM, SEM, TEM, XRD, XPS, and Raman spectroscopy. Screening studies on nanoparticle formation and CNT growth with the well known system SiO2/Ni are presented. This system is characterized by a weak support/catalyst interaction, which leads to undirected growth of multi-walled CNTs (MWCNTs). By contrast, at the Ta/Ni system a strong interaction causes a wetting of catalyst nanoparticles and vertically aligned MWCNT growth. At the system W/Ni a strong interaction at the interface is found as well, but there it induces Stranski-Krastanov catalyst film reformation upon pretreatment and complete CNT growth inhibition. Studies on the SiO2/Cr/Ni system reveal that Cr and Ni act as a bi-catalyst system, which leads to a novel nanostructure defined as interlayer CNT (ICNT) structure. The ICNT films are characterized by well crystallized vertically aligned MWCNTs, which grow out a Cr/Ni layer lifted off as a continuous and very smooth layer from the substrate with the growth. Besides, this nanostructure offers new possibilities for the integration of CNTs in different electronic applications. Based on the presented possibilities of manipulating CNT growth, an integration technology was derived to fabricate CNT vias. The technology uses a surface mediated site-selective CVD for the growth of MWCNTs in via structures. Developments are demonstrated with the fabrication of via test vehicles and the site-selective growth of MWCNTs in vias on 4 inch wafers. Furthermore, the known resistance problem of CNT vias, caused by too low CNT density, is addressed by a new approach. A CNT/metal heterostructure is considered, where the metal is implemented through atomic layer deposition (ALD). The first results of the coating of CNTs with readily reducible copper oxide nanoparticles are presented and discussed. / Aufgrund der kontinuierlichen Verkleinerung von Strukturen in extrem hoch integrierten (engl. Ultra-Large Scale Integration − ULSI) Schaltkreisen werden die Anforderungen an die Materialien und die Technologie in naher Zukunft dramatisch ansteigen. Besonders im Leitbahnsystem sind neue Materialien und Konzepte gefragt. Kohlenstoffnanoröhren (engl. Carbon Nanotubes − CNT) stellen hierbei ein vielversprechendes Material dar, um teilweise oder sogar vollständig metallische Leitbahnen zu ersetzen. Die vorliegende Arbeit liefert einen Beitrag zur CNT-Wachstumskontrolle mit der thermischen Gasphasenabscheidung (engl. Chemical Vapor Deposition − CVD) sowie der Integration von CNTs als vertikale Leitungsverbindungen (Via) in ULSI-Schaltkreisen. Verschiedene Untergrund/Katalysator-Systeme werden in Prozessen zur Katalysatorvorbehandlung sowie zum CNT-Wachstum betrachtet. Die Untersuchungen richten sich insbesondere auf die Katalysatorformierung und die Wechselwirkungen an den Grenzflächen. Diese werden mit dem CNT-Wachstum in Verbindung gebracht. Für Untersuchungen von Grenzflächeninteraktionen, Schichtstruktur, Zusammensetzung sowie CNT-Wachstumscharakteristik werden Analysen mit AFM, REM, TEM, XRD, XPS und Raman-Spektroskopie genutzt. Zunächst werden Voruntersuchungen an dem gut bekannten System SiO2/Ni zur Nanopartikelformierung und CNTWachstum vorgestellt. Dieses System ist gekennzeichnet durch eine schwache Wechselwirkung zwischen Untergrund und Katalysator sowie ungerichtetem Wachstum von mehrwandigen CNTs (MWCNTs). Im Gegensatz dazu hat bei dem System Ta/Ni eine starke Interaktion an der Grenzfläche eine Katalysatornanopartikelbenetzung und vertikales MWCNT-Wachstum zur Folge. Für das W/Ni-System gelten ebenfalls starke Interaktionen an der Grenzfläche. Bei diesem System wird allerdings eine Stranski-Krastanov-Schichtformierung des Katalysators und eine vollständige Unterbindung von CNT-Wachstum erreicht. Bei dem System SiO2/Cr/Ni agieren Cr und Ni als Bi- Katalysatorsystem. Dies führt zu einer neuartigen Nanostruktur, die als Zwischenschicht-CNT (engl. Interlayer Carbon Nanotubes − ICNTs) Struktur definiert wird. Die Schichten sind durch eine gute Qualität von gerichteten MWCNTs charakterisiert, die aus einer geschlossenen, sehr glatten und von den CNTs getragenen Cr/Ni-Schicht herauswachsen. Darüber hinaus bietet die Struktur neue Möglichkeiten für die Integration von CNTs in verschiedene elektronische Anwendungen. Auf der Grundlage der vorgestellten Manipulationsmöglichkeiten von CNT-Wachstum wurde eine Integrationstechnologie für CNTs in Vias abgeleitet. Der Ansatz ist eine oberflächeninduzierte selektive CVD von vertikal gerichteten MWCNTs in Via-Strukturen. Diese Technologie wird mit der Herstellung von einem Via-Testvehikel und dem selektiven CNT-Wachstum in Vias auf 4 Zoll Wafern demonstriert. Um das Widerstandsproblem von CNT-Vias, verursacht durch eine zu niedrige CNT-Dichte, zu reduzieren, wird eine Technologieerweiterung vorgeschlagen. Der Ansatz geht von einer CNT/Metall-Heterostruktur aus, bei der das Metall mit Hilfe der Atomlagenabscheidung (engl. Atomic Layer Deposition − ALD) implementiert wird. Es werden erste Ergebnisse zur CNT-Beschichtung mit reduzierbaren Kupferoxidnanopartikeln vorgestellt und diskutiert.

Page generated in 0.0381 seconds