Spelling suggestions: "subject:"elektronische geräte"" "subject:"elektronische endgeräte""
1 |
Room-temperature domain-epitaxy of copper iodide thin films for transparent CuI/ZnO heterojunctions with high rectification ratios larger than 109Yang, Chang, Kneiß, Max, Schein, Friedrich-Leonhard, Lorenz, Michael, Grundmann, Marius 27 June 2016 (has links) (PDF)
CuI is a p-type transparent conductive semiconductor with unique optoelectronic properties, including wide band gap (3.1 eV), high hole mobility (>40 cm2 V−1 s−1 in bulk), and large room-temperature exciton binding energy (62 meV). The difficulty in epitaxy of CuI is the main obstacle for its application in advanced solid-state electronic devices. Herein, room-temperature heteroepitaxial growth of CuI on various substrates with well-defined in-plane epitaxial relations is realized by reactive sputtering technique. In such heteroepitaxial growth the formation of rotation domains is observed and hereby systematically investigated in accordance with existing theoretical study of domain-epitaxy. The controllable epitaxy of CuI thin films allows for the combination of p-type CuI with suitable n-type semiconductors with the purpose to fabricate epitaxial thin film heterojunctions. Such heterostructures have superior properties to structures without or with weakly ordered in-plane orientation. The obtained epitaxial thin film heterojunction of p-CuI(111)/n-ZnO(00.1) exhibits a high rectification up
to 2 × 109 (±2 V), a 100-fold improvement compared to diodes with disordered interfaces. Also a low saturation current density down to 5 × 10−9 Acm−2 is formed. These results prove the great potential of
epitaxial CuI as a promising p-type optoelectronic material.
|
2 |
Room-temperature domain-epitaxy of copper iodide thin films for transparent CuI/ZnO heterojunctions with high rectification ratios larger than 109Yang, Chang, Kneiß, Max, Schein, Friedrich-Leonhard, Lorenz, Michael, Grundmann, Marius January 2016 (has links)
CuI is a p-type transparent conductive semiconductor with unique optoelectronic properties, including wide band gap (3.1 eV), high hole mobility (>40 cm2 V−1 s−1 in bulk), and large room-temperature exciton binding energy (62 meV). The difficulty in epitaxy of CuI is the main obstacle for its application in advanced solid-state electronic devices. Herein, room-temperature heteroepitaxial growth of CuI on various substrates with well-defined in-plane epitaxial relations is realized by reactive sputtering technique. In such heteroepitaxial growth the formation of rotation domains is observed and hereby systematically investigated in accordance with existing theoretical study of domain-epitaxy. The controllable epitaxy of CuI thin films allows for the combination of p-type CuI with suitable n-type semiconductors with the purpose to fabricate epitaxial thin film heterojunctions. Such heterostructures have superior properties to structures without or with weakly ordered in-plane orientation. The obtained epitaxial thin film heterojunction of p-CuI(111)/n-ZnO(00.1) exhibits a high rectification up
to 2 × 109 (±2 V), a 100-fold improvement compared to diodes with disordered interfaces. Also a low saturation current density down to 5 × 10−9 Acm−2 is formed. These results prove the great potential of
epitaxial CuI as a promising p-type optoelectronic material.
|
3 |
Electronic Devices Using Open Framework MaterialsFeng, Xinliang, Allendorf, Mark D., Dong, Renhao, Kaskel, Stefan, Matoga, DariusZ, Stavila, Vitalie 05 August 2022 (has links)
Open framework materials (OFM) constitute a large and growing class of nanoporous crystalline structures that is attracting considerable attention for electronic device applications. This review summarizes the most recent reports concerning electronic devices enabled by either of the two primary categories of OFM, metal–organic frameworks (MOFs) and covalent–organic frameworks (COFs). Devices in which the OFM plays an active role (as opposed to acting only as a selective sorbent or filter) are the principal focus, with examples cited that include field-effect transistors, capacitors, memristors, and a wide variety of sensing architectures. As a brief tutorial, we also provide a concise summary of various methods of depositing or growing OFM on surfaces, as these are of crucial importance to the deployment of electronic OFM. Finally, we offer our perspective concerning future research directions, particularly regarding what in our view are the biggest challenges remaining to be addressed. On the basis of the literature discussed here, we conclude that OFM constitute a unique class of electronic materials with characteristics and advantages that are distinct from either conventional inorganic semiconductors or organic conductors. This suggests a bright future for these materials in applications such as edge computing, resistive switching, and mechanically flexible sensing and electronics.
|
Page generated in 0.062 seconds