• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • Tagged with
  • 36
  • 36
  • 36
  • 36
  • 12
  • 12
  • 12
  • 10
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Charged Higgs Boson Studies in ttbar -Dilepton Events at the LHC

Zimmer, Stephan January 2009 (has links)
<p>A generator-level study of dilepton ttbar events to search for light charged Higgs bosons at the LHC is presented with the aim of finding a new variable to discriminate between charged Higgs signals and Standard Model signatures. The spin effects in leptonic decays of H<sup>±</sup> and W bosons are studied and a new angular distribution is identified as a discriminating variable. Studies are performed for different charged Higgs masses at two different center ofmass energies. Monte Carlo samples of Z+jets production are also used to test the analysis.</p>
22

Charged Higgs Boson Studies in ttbar -Dilepton Events at the LHC

Zimmer, Stephan January 2009 (has links)
A generator-level study of dilepton ttbar events to search for light charged Higgs bosons at the LHC is presented with the aim of finding a new variable to discriminate between charged Higgs signals and Standard Model signatures. The spin effects in leptonic decays of H± and W bosons are studied and a new angular distribution is identified as a discriminating variable. Studies are performed for different charged Higgs masses at two different center ofmass energies. Monte Carlo samples of Z+jets production are also used to test the analysis.
23

Charged Higgs Boson Studies in the Channel pp→a1h±→4b+l+MET in the Next-to MSSM (NMSSM) with the ATLAS Experiment

Zimmer, Stephan January 2010 (has links)
Next-to-minimal super-symmetric extensions of the Standard Model (SM) predict the existence of several non-SM like Higgs bosons. The process pp→a1h±→4b+W involves the production and the decay of a spin-0 charged Higgs boson and a CP-odd Higgs boson a1 which can have a sizable cross section in the NMSSM. The invariant masses of these intermediate bosons can be reconstructed from the four momenta of the final state particles using mass minimization algorithms. This thesis presents a cut-based analysis of two mass scenarios and specialized algorithms that are capable of recovering the signal in a large background arising from Standard Model processes such as ttbar. The analysis is tested with a realistic ATLAS detector simulation investigating trigger efficiencies and probing several jet reconstruction algorithms.
24

Measurements of the Top Quark Pair Production Cross Section and an Estimate of the DØ Silicon Detector Lifetime

Strandberg, Sara January 2007 (has links)
<p>This thesis presents two measurements of the top quark pair production cross section at sqrt{s} = 1.96 TeV using data from the DØ experiment. Both measurements are performed in the dilepton final state and make use of secondary vertex b-tagging. With 158 pb<sup>-1</sup> of data in the electron-muon final state, the measured cross section is:</p><p>σ(top-antitop) = 11.1 +5.8 -4.3 (stat) +- 1.4 (syst) +- 0.7 (lumi) pb.</p><p>With 425 pb<sup>-1</sup> of data in the electron+track and muon+track final states, the measured cross section is:</p><p>sigma(top-antitop) = 6.3 +2.1 -1.8 (stat) +- 1.1 (syst) +- 0.4 (lumi) pb.</p><p>Both measurements are in agreement with the prediction from perturbative QCD calculations. In addition, an estimate of the DØ silicon detector lifetime is presented. The radiation damage is determined by studying the depletion voltage of the silicon sensors as a function of time. Based on this data the silicon detector is estimated to remain operational up to delivered luminosities of 6-8 fb<sup>-1</sup>.</p>
25

Measurements of the Top Quark Pair Production Cross Section and an Estimate of the DØ Silicon Detector Lifetime

Strandberg, Sara January 2007 (has links)
This thesis presents two measurements of the top quark pair production cross section at sqrt{s} = 1.96 TeV using data from the DØ experiment. Both measurements are performed in the dilepton final state and make use of secondary vertex b-tagging. With 158 pb-1 of data in the electron-muon final state, the measured cross section is: σ(top-antitop) = 11.1 +5.8 -4.3 (stat) +- 1.4 (syst) +- 0.7 (lumi) pb. With 425 pb-1 of data in the electron+track and muon+track final states, the measured cross section is: sigma(top-antitop) = 6.3 +2.1 -1.8 (stat) +- 1.1 (syst) +- 0.4 (lumi) pb. Both measurements are in agreement with the prediction from perturbative QCD calculations. In addition, an estimate of the DØ silicon detector lifetime is presented. The radiation damage is determined by studying the depletion voltage of the silicon sensors as a function of time. Based on this data the silicon detector is estimated to remain operational up to delivered luminosities of 6-8 fb-1.
26

Phenomenology of Inert Scalar and Supersymmetric Dark Matter

Lundström, Erik January 2010 (has links)
While the dark matter has so far only revealed itself through the gravitational influence it exerts on its surroundings, there are good reasons to believe it is made up by WIMPs – a hypothetical class of heavy elementary particles not encompassed by the Standard Model of particle physics. The Inert Doublet Model constitutes a simple extension of the Standard Model Higgs sector. The model provides a new set of scalar particles, denoted inert scalars because of their lack of direct coupling to matter, of which the lightest is a WIMP dark matter candidate. Another popular Standard Model extension is that of supersymmetry. In the most minimal scenario the particle content is roughly doubled, and the lightest of the new supersymmetric particles, which typically is a neutralino, is a WIMP dark matter candidate. In this thesis the phenomenology of inert scalar and supersymmetric dark matter is studied. Relic density calculations are performed, and experimental signatures in indirect detection experiments and accelerator searches are derived. The Inert Doublet Model shows promising prospects for indirect detection of dark matter annihilations into monochromatic photons. It is also constrained by the old LEP II accelerator data. Some phenomenological differences between the Minimal Supersymmetric Standard Model and a slight extension, the Beyond the Minimal Supersymmetric Standard Model, can be found. Also, supersymmetric dark matter models can be detected already within the early LHC accelerator data.
27

Phenomenology of Charged Higgs Bosons and B-meson Decays

Eriksson, David January 2009 (has links)
For more than 30 years the Standard Model has been the theoretical foundation for particle physics. The theory has been verified successfully by experimental tests. Its biggest shortcoming is the non-discovery of the Higgs boson,responsible for giving the other particles masses. Despite its success there are hints that the Standard Model is not the complete theory and many extensions of it, such as supersymmetry, have been proposed. Extended theories often predict the existence of a charged Higgs boson and its detection will be a clear sign of physics beyond the Standard Model. The main focus in this thesis is on various phenomenological aspects of the charged Higgs boson. For favorable mass and couplings direct detection is shown to be possible at the Large Hadron Collider in production with an associated W boson. It is also shown how a light charged Higgs can have measurable effects on spin correlations in decays of pair-produced top quarks. The charged Higgs boson can also be seen indirectly, in for example B-meson decays, which can be used to put constraints on its mass and fermion couplings. Exclusion limits in two supersymmetric models are given together with a comparison with the discovery potentials for the LHC experiments. A tool for calculating properties, such as masses and decays, of both charged and neutral Higgs bosons in the Two-Higgs-Doublet Model is also presented. B-meson decays can also be used to test aspects of the strong interaction. Part of this thesis deals with improving and applying phenomenological models to B-meson decays. Although these models are not derived from first principles, their success shows that they capture important features of non-perturbative strong interactions.
28

Measurements of Angular Correlations in Minimum Bias Events and Preparatory Studies for Charged Higgs Boson Searches at the Tevatron and the LHC

Bélanger-Champagne, Camille January 2011 (has links)
Studies of minimum bias events at colliders probe the behavior of QCD in the non-perturbative regime. The phenomenology of events in this regime is described by empirical models that take many parameters, which all need to be tuned to the observed data. Measurements based on angular correlations between the highest transverse momentum charged particle track and the other charged particle tracks in collision events can, because of their robustness against experimental and detector effects, be a component of the tuning inputs for the models. We measure such observables in a variety of pseudorapidity ranges and at many center-of-mass energies at DØ and ATLAS. We observe that such observables are poorly described by current models and tunes that are used to produce simulated event samples, making them valuable information for the tuning process. The Matrix Element method is a powerful analysis tool to extract precise measurements from data samples of limited statistics. We have investigated the potential of the Matrix Element method to measure the mass of the charged Higgs in the exclusive decay H±→τ±ν→e±+3ν when produced in top quark decays at the Tevatron, with emphasis on the construction of transfer functions in the τ decay chain. We concluded that the τ decay chain can be successfully parametrized via a transfer function and that the method has the potential to provide an accurate charged Higgs mass measurement in this channel. Triggering on τ leptons is a key component for many beyond the Standard Model searches at ATLAS, such as the search for the charged Higgs boson. Events containing Z bosons can be used to measure the efficiency of the ATLAS τ hadronic-decay trigger. We have used a tag-and-probe method on simulated Z boson decays to 2 τ leptons where one decays to a μ while the other decays hadronically. The μ is used as the tag and the τ side is probed. We demonstrated that the efficiency of the τ hadronic-decay trigger can be accurately measured with this method using the first 100 pb-1 of ATLAS data. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 732
29

Astrophysical and Collider Signatures of Extra Dimensions

Melbéus, Henrik January 2010 (has links)
<p>In recent years, there has been a large interest in the subject of extra dimensions in particle physics. In particular, a number of models have been suggested which provide solutions to some of the problems with the current Standard Model of particle physics, and which could be tested in the next generation of high-energy experiments. Among the most important of these models are the large extra dimensions model by Arkani-Hamed, Dimopoulos, and Dvali, the universal extra dimensions model, and models allowing right-handed neutrinos to propagate in the extra dimensions. In this thesis, we study phenomenological aspects of these three models, or simple modifications of them.</p><p> </p><p>The Arkani-Hamed-Dimopoulos-Dvali model attempts to solve the gauge hierarchy problem through a volume suppression of Newton's gravitational constant, lowering the fundamental Planck scale down to the electroweak scale. However, this solution is unsatisfactory in the sense that it introduces a new scale through the radius of the extra dimensions, which is unnaturally large compared to the electroweak scale. It has been suggested that a similar model, with a hyperbolic internal space, could provide a more satisfactory solution to the problem, and we consider the hadron collider phenomenology of such a model.</p><p> </p><p>One of the main features of the universal extra dimensions model is the existence of a potential dark matter candidate, the lightest Kaluza-Klein particle. In the so-called minimal universal extra dimensions model, the identity of this particle is well defined, but in more general models, it could change. We consider the indirect neutrino detection signals for a number of different such dark matter candidates, in a five- as well as a six-dimensional model.</p><p> </p><p>Finally, right-handed neutrinos propagating in extra dimensions could provide an alternative scenario to the seesaw mechanism for generating small masses for the left-handed neutrinos. Since extra-dimensional models are non-renormalizable, the Kaluza-Klein tower is expected to be cut off at some high-energy scale. We study a model where a Majorana neutrino at this cutoff scale is responsible for the generation of the light neutrino masses, while the lower modes of the tower could possibly be observed in the Large Hadron Collider. We investigate the bounds on the model from non-unitarity effects, as well as collider signatures of the model.</p>
30

Emittance preservation and luminosity tuning in future linear colliders

Eliasson, Peder January 2008 (has links)
<p>The future International Linear Collider (ILC) and Compact Linear Collider (CLIC) are intended for precision measurements of phenomena discovered at the Large Hadron Collider (LHC) and also for the discovery of new physics. In order to offer optimal conditions for such experiments, the new colliders must produce very-high-luminosity collisions at energies in the TeV regime.</p><p>Emittance growth caused by imperfections in the main linacs is one of the factors limiting the luminosity of CLIC and ILC. In this thesis, various emittance preservation and luminosity tuning techniques have been tested and developed in order to meet the challenging luminosity requirements.</p><p>Beam-based alignment was shown to be insufficient for reduction of emittance growth. Emittance tuning bumps provide an additional powerful preservation tool. After initial studies of tuning bumps designed to treat certain imperfections, a general strategy for design of optimised bumps was developed. The new bumps are optimal both in terms of emittance reduction performance and convergence speed. They were clearly faster than previous bumps and reduced emittance growth by nearly two orders of magnitude both for CLIC and ILC.</p><p>Time-dependent imperfections such as ground motion and magnet vibrations also limit the performance of the colliders. This type of imperfections was studied in detail, and a new feedback system for optimal reduction of emittance growth was developed and shown to be approximately ten times more efficient than standard trajectory feedbacks.</p><p>The emittance tuning bumps require fast and accurate diagnostics. The possibility of measuring emittance using a wide laserwire was introduced and simulated with promising results. While luminosity cannot be directly measured fast enough, it was shown that a beamstrahlung tuning signal could be used for efficient optimisation of a number of collision parameters using tuning bumps in the Final Focus System.</p><p>Complete simulations of CLIC emittance tuning bumps, including static and dynamic imperfections and realistic tuning and emittance measurement procedures, showed that an emittance growth six times lower than that required may be obtained using these methods.</p>

Page generated in 0.0686 seconds