• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

β-Hydrogen Isotope Effects in the Elimination Reaction of threo-1,2-Diphenyl-1-propyltrimethylammonium Iodide.

Lau, Lawrence 04 1900 (has links)
α-Epimerisation has been found to be absent in the reactions of threo-1,2-diphenyl-1-propyltrimethylammonium ion and its -2-d₁ analogue with t-butoxide ion in t-butyl alcohol at 30ºC. The formation of trans-α-methylstilbene, cis-α-methylstilbene and threo-N,N-dimthyl-1,2-diphenyl-1-propylamine has been associated with anti-elimination, syn-elimination and with nucleophilic substitution at a N-methyl carbon atom, respectively, and interpreted in terms of structural and medium features of the reactions. The β-hydrogen isotope effects for anti- and syn-elimination have been associated with reactant-like and product-like transition states, respectively, for these reaction modes. / Thesis / Master of Science (MSc)
2

Synthesis of 2,4-Disubstituted Pyrimidine Derivatives as Potential 5-HT7 Receptor Antagonist.

Sullivan, Shannon M. 05 May 2008 (has links)
The synthesis of a series of 2-chloropyrimidine derivatives is described. The synthesis began with a nucleophilic addition of lithiated heterocyclic molecules to the 4 position of 2-chloropyrimidine to give dihydropyrimidine intermediates. The intermediates were oxidized to the pyrimidine ring using the DDQ method. This was followed by an addition-elimination reaction of an amine to the 2-chloropyrimidine derivative. The structure and properties of the final compounds were analyzed by melting point, combustion analysis, and 13C-NMR and 1H-NMR spectroscopy. Biological activities in vitro of the synthesized compounds as antagonists of the 5-HT2a and 5-HT7 receptors were determined by an independent laboratory.

Page generated in 0.1737 seconds