Spelling suggestions: "subject:"embankment"" "subject:"embarrassment""
11 |
INTEGRATED GEOPHYSICAL IMAGING OF SUBSURFACE GEOLOGIC CONDITIONS ACROSS A CONTAMINANT PLUME, MCCRACKEN COUNTY, KENTUCKYBlits, Cora A. 01 January 2008 (has links)
Over 7.8 km of seismic reflection data and 2 km of electrical resistivity data were acquired, processed, and interpreted during this multi-method geophysical study. Objectives included the definition of geologic conditions underlying a contaminant plume in McCracken County, western Kentucky, and the determination of the potential for structural control on the rate and direction of plume migration. Both geophysical methods indicate the presence of multiple high-angle normal faults outlining a series of asymmetric grabens ranging in width from 160 m to almost 300 m and striking between N40°E and N45°E. There was agreement between the two methods on fault location and degree of near-surface offset, with offsets of 1 to 2 m observed at 10 to 20 m below ground surface and 3 to 8 m observed at 20 to 30 m depth. Bedrock displacement was generally 2 to 3 times larger, with offsets of 10 to 26 m observed. The faults appear to have originated in the Paleozoic with predominantly normal reactivation occurring as recently as the Pleistocene. The fault strikes generally approximate the orientation of the northwestern contaminant plume. Observed offset of the Regional Gravel Aquifer may form a preferential flow path for contaminant migration.
|
12 |
Development of shear wave velocity profiles in the deep sediments of the Mississippi Embayment using surface wave and spectral ratio methodsBailey, Jonathan Pqul. January 2008 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2008. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 10, 2009 Includes bibliographical references.
|
13 |
A dinâmica sedimentar e a caracterização de Zonas de Erosão Acentuada (ZEA) ao longo do arco praial de Massaguaçu, SP / The sediment dynamics and the characterization of erosional Hot Spot (EHS) in Massaguaçu beach, SPCarlos Eduardo Rogacheski 10 November 2010 (has links)
Nas últimas décadas, a praia de Massaguaçu vem sofrendo processos erosivos intensos, cujos segmentos possuem taxas de recuo acentuadas, denominadas Zonas de Erosão Acentuada (ZEAs). Partindo deste problema este trabalho se propôs a entender a dinâmica sedimentar do arco praial de Massaguaçu e das possíveis causas de formação e manutenção das ZEAs. A coleta de dados se baseou no levantamento batimétrico e do clima de ondas, bem como no levantamento sonográfico de varredura lateral e na coleta de amostras de sedimento de superfície da antepraia de Massaguaçu. Para processar os dados se optou pela aplicação da modelagem numérica utilizando o modelo SWAN (propagação de ondas em águas profundas) e o modelo SMC (módulos OLUCA, COPLA e EROS, que trabalham, respectivamente, com propagação de ondas em águas rasas, simulação de correntes e simulação de transporte sedimentar). Para a formulação da discussão foram selecionados os 6 (seis) casos que apresentaram as condições de ondas mais representativas. Tais casos mostraram que a dinâmica sedimentar e os processos costeiros responsáveis pela formação e manutenção das ZEAs são controlados por dois padrões distintos de ondas incidentes. O primeiro padrão está relacionado às ondas vindas de NE - E, que geram correntes longitudinais para o sul. Suas correntes longitudinais e transversais à costa são de baixa intensidade resultando em um transporte sedimentar e em variações da morfologia praial menos intensos, além de formar células de circulação em vórtices. O segundo padrão, por sua vez, está relacionado às ondas oriundas SSE - SE - ESSE, cujas correntes litorâneas longitudinais rumam ao norte. Tais correntes longitudinais e transversais à costa, apresentam uma intensidade maior, portanto o transporte sedimentar e as variações da morfologia ao longo do arco praial são maiores bem como as células de circulação em vórtices. Partindo desses resultados, percebeu-se que as ZEAs em Massaguaçu estão ligadas a um possível aumento na frequência e na intensidade das tempestades ao longo das últimas décadas e até o presente momento, não há mecanismos naturais que revertam esta retração da linha de costa. / Over the past decades in Massaguaçu beach has happening a strong erosion process with segments that have higher retreat rates, commonly termed as Erosional Hot Spots (EHSs). This research aims the understanding of the sedimentary dynamics along the Massaguaçu embayment and also the possible causes of the formation and maintenance of the EHSs. The methodology was separately on two steps. At first we collected bathymetry, wave and side-scan sonar data, and samples of the surface sediments from the shoreface of Massaguaçu beach. Later, to analyze majority data, we chose to use numerical modeling based on the SWAN model (propagation of waves in deep water) and SMC model (modules OLUCA, COPLA and EROS, that work respectively with the propagation of waves in shallow water, the simulation of currents and finally the simulation of sediment transport). After modeling, we were able to select the 6 (six) most representative wave conditions cases. Those results show that the control of the sediment dynamics and the coastal processes responsible for the formation and the maintenance of ZEA are based on the characteristics of the incident waves. On trying to explain that process, it was possible to recognize two distinct patterns. The first pattern observed is associated with the NE - E waves, generating longshore currents to the south. In this case, both the longshore and the crosshore currents are less intense, forming cells circulation in vortex, resulting in minor variations in sediment transport and beach morphology. The second pattern is related with the SSE - SE - ESE waves, generating longshore currents to the north. In this case both the longshore and the crosshore currents are more intense, although still with occurrence of forming cells circulation in vortex, resulting in a larger sediment transport and morphological changes along the beach. Finally, what we have seem was that the ZEAs in Massaguaçu are possibly linked to a potential increment on storms frequency and intensity over the past decades and unfortunately, at present, there is still no mechanism to recover this natural retreat of the coastline.
|
14 |
(U-Th)/He Thermochronology of the Ottawa Embayment, Eastern Canada: the Temperature-time History of an Ancient, Intracratonic Rift BasinHardie, Rebecca January 2016 (has links)
The Ottawa Embayment is a intracratonic rift basin that preserves a unique and eventful history through deep time. Its evolution records opening of the Iapetus Ocean with the break-up of Rodinia, followed by the formation of a continental passive margin, trapping siliciclastic sediments eroded from the adjacent Grenville Province. Samples were collected from a transect across the crystalline rift flank and through the embayment. We investigate the influence of crystallinitiy and non-ideal crystal chapes on He diffusion and resulting zircon (U-Th)/He age with the use of zircon (U-Th)/He thermochronometry, raman spectroscopy and x-ray micro-computed tomography. We then integrate our thermochronology data with regional geology to utilize multi-sample numerical modelling to improve our understanding of the thermal history of the Ottawa Embayment and the evolution of intracratonic rift basins. The works collected within define a comprehensive temperature-time history for the basin and rift flank from the Late-Mesoproterozoic to present day.
|
15 |
SEISMIC SPOT SOUNDINGS REVEAL DEEP BATHYMETRY AND THICK WATER COLUMN BETWEEN CROSSON AND DOTSON ICE SHELVES, WEST ANTARCTICARoccaro, Alexander, 0000-0002-4683-3054 January 2020 (has links)
The Bear Island Strait between Crosson and Dotson Ice Shelves in the Amundsen Sea Embayment sector of West Antarctica is an important junction for seawater exchange in the region. This work establishes that two previously distinct masses of seawater beneath the ice shelves now interact due to the thinning of the ice that separated them. A pathway connecting the water masses is revealed using reflection-seismic spot soundings to measure the bathymetry and water-column thickness beneath the ice in the Bear Island Strait. The spot soundings reveal a seafloor that is deep (> 800 m below sea level) and continuous to allow circulation of a layer of deep, warm and salty sub-ice water mass into the strait. However, the geometry of the water column through the strait may only allow one-way circulation of this layer from the Crosson side to the Dotson side, with Dotson to Crosson circulation constricted to upper, cooler water. Crosson to Dotson circulation could account for the observed high melt rates (~10 m/yr) at the grounding line of a Dotson pinning point, consistent with an inverted channel previously imaged on the underside of the Dotson Ice Shelf. By extension, the pathway through the Bear Island Strait allows water exchange between two large bathymetric troughs on the continental shelf. These results indicate previously unaccounted for avenues of regional ocean circulation and heat exchange likely to the influence the future deglaciation rate of the Amundsen Sea Embayment and West Antarctica. / Geology
|
16 |
Modelling the Impact of Anthropogenic Disturbance on Water Quality in the Coastal Zone of Eastern Georgian Bay, Lake HuronCampbell, Stuart, D January 2017 (has links)
Though the water in eastern Georgian Bay is oligotrophic, some of the coastal embayments and wetlands have begun to show signs of water quality impairment that is thought to be related to human development along the shoreline. The primary objective of my thesis is to provide environmental agencies with the resources to effectively manage water quality in the coastal zone of eastern Georgian Bay. First, I evaluate the ability of the Lakeshore Capacity Model (LCM), developed for inland Precambrian Shield lakes, to predict the trophic status of coastal embayments. Finding that the LCM does not accurately predict trophic status, I develop the Anthro-geomorphic Model (AGM), which uses the level of human development and the degree of mixing between the embayment and open waters of Georgian Bay to predict embayment trophic status. Second, I explore the spatial association between densities of building, dock and road development and Water Quality Index (WQI) scores, an index designed to evaluate wetland condition, for wetlands in the Township of Georgian Bay. I found an inverse relationship between WQI scores and the density of these stressor variables inside wetland catchments, which indicates that these stressors have a negative impact on wetland water quality. I then created a series of mapping products that present building, dock and road densities, along with WQI scores for 61 wetlands in the Township of Georgian Bay, to determine how wetland water quality is spatially associated with densities of these stressor variables. I found that regions with high densities of building, dock and road development were associated with wetlands of lower quality, whereas wetlands in areas that had low densities of development were of higher quality. I used this information to identify areas of conservation priority for management in the Township of Georgian Bay. The results from this thesis will provide environmental managers with resources to protect the valuable coastal waters of eastern Georgian Bay. / Thesis / Master of Science (MSc) / A number of coastal embayments and wetlands of eastern Georgian Bay show signs of water quality impairment thought to be caused by cottage development. The objective of my thesis is to develop and evaluate models designed to measure the impact of human development on water quality in these coastal zones. First, finding that the Ontario Lakeshore Capacity Model, developed for Muskoka lakes, does not accurately predict trophic status in embayments, I develop the Anthro-geomorphic Model, which uses building density and basin morphometry to predict embayment trophic status. Second, I explore the appropriateness of using development densities (building, dock and road) to quantify anthropogenic stress in coastal wetlands. This thesis provides the scientific basis for choosing management practices to protect the coastal waters of Georgian Bay.
|
17 |
Shoreline architecture and sequence stratigraphy of Campanian Iles clastic wedge, Piceance Basin, CO : influence of Laramide movements in Western Interior SeawayKaraman, Ozge 09 November 2012 (has links)
The Campanian Iles Formation of the Mesaverde Group in northwestern Colorado contains a stacked series of some 11 shoreline sequences that form clastic wedges extending east and southeastwards from the Sevier orogenic belt to the Western Interior Seaway. Iles Formation shorelines and their alluvial and coastal plain equivalents (Neslen Formation, Trail and Rusty members of the Ericson Formation) are well exposed from Utah and from southern Wyoming into northwestern Colorado. The Iles Clastic Wedge was examined in the subsurface Piceance Basin and at outcrops in Meeker and south of Rangely, NW Colorado. The clastic wedge contains low-accommodation regressive-transgressive sequences (8-39 m thick) of Loyd Sandstones, Sego Sandstone, Corcoran Member, and Cozzette Member and their updip-equivalent Neslen Formation strata.
Facies associations of the sandstone succession indicate storm-wave dominated coasts that transition seaward into offshore/prodelta mudstones with thin-bedded sandstones and extend landward into tidal/fluvial channels and coal-bearing strata; facies associations also indicate interdeltaic coastal embayments with moderate tidal influence. 14, 75-km-long Piceance Basin transects (dip and strike oriented) makes it possible to evaluate coastline variability, and the progressive southeasterly pinchout of the 11 coastline tongues within the larger Iles Clastic Wedge. The thickness and great updip-downdip extent of the Iles stratigraphic sequences (compared to the underlying Blackhawk or overlying Rollins sequences) support previous observations of a low accommodation setting during this time. It has been suggested that this low accommodation was caused by combined effects of embryonic Laramide uplifts and Sevier subsidence across the region. Uplift or greatly reduced subsidence across the Western Interior Seaway would have caused an increase in coastal embayments as well as generally accelerated coastal regressions and transgressions in this 3.3 My interval. / text
|
18 |
CONSTRAINING BOUNDARIES AND EXTENT OF THE CHARLESTON UPLIFT, NORTHEAST NEW MADRID SEISMIC ZONE, USING SHALLOW SEISMIC REFLECTION METHODSRucker, Clara Rose 01 January 2017 (has links)
A recently identified 30 km by 7.2 km subsurface stratigraphic uplift, called the Charleston uplift, exhibits 36 m offset of Paleogene-Quaternary unconformity based on shallow borehole data. Two seismic soundings demonstrated relief in Paleozoic and Cretaceous reflectors across the northern boundary of the uplift, suggesting a structural origin rather than an erosional origin. This study collected and analyzed 18 additional shallow seismic soundings to confirm Paleozoic and Cretaceous offset across the boundaries of the uplift, to better constrain the surface trace of the uplift, and to examine potential extension into western Kentucky. One ground penetrating radar profile was taken in western Kentucky to image recent deformation. Results confirm Paleozoic and Cretaceous offset along the boundaries of the uplift and indicate extension of the uplift into western Kentucky, although recent deformation was unconfirmed by the radar profile. These data support a structural origin. The N46°E trend of the uplift as well as its coincidence with contemporary microseismicity suggest that this feature may be related to the New Madrid seismic zone, specifically the New Madrid North fault, which may have implications for hazard assessment, as well as possible a reevaluation of the epicenters for the 23 January 1812 Mw ≥ 7.0 event.
|
19 |
Sedimentology, Stratigraphic Evolution and Provenance of the Cambrian – Lower Ordovician Potsdam Group in the Ottawa Embayment and Quebec BasinLowe, David January 2016 (has links)
The Cambrian – Lower Ordovician Potsdam Group is a mostly siliciclastic unit that provides important insight into the paleoenvironmental, geologic and tectonic history of Early Paleozoic Laurentia. Nevertheless, in spite of 178 years of study the Potsdam in the Ottawa Embayment and Quebec Basin remains poorly understood. Also poorly understood is how the Potsdam relates with coeval strata regionally.
In this work six siliciclastic paleoenvironments are recognized: (a) braided fluvial, (b) ephemeral fluvial, (c) aeolian, (d) coastal sabkha, (e) tide-dominated marine and (f) open-coast tidal flat. Fluvial strata were examined in particular detail and interpreted to consist of two end-member kinds. Braided fluvial deposits are dominated by low-relief bars formed in wide, shallow channels; however where basement structures limited the lateral growth of channels, flows were deeper and bar deposits thicker and higher angle. In contrast, ephemeral fluvial strata are dominated by sheetflood splay sedimentation with rare preservation of scour-filling supercritical bedform strata – all later subjected to aeolian reworking. In the upper Potsdam, alternating ephemeral and braided fluvial strata provide a record of climate change, which, respectively, correlate with documented global cool (arid) and warm (humid) periods during the Late Cambrian and Early Ordovician.
Three allounits are recognized in Potsdam strata, recording regional episodes of sedimentation and facilitating correlation with coeval strata throughout eastern North America. These correlations, aided with provenance data from detrital zircons, show that changes in the areal distribution of sediment supply, accommodation and deposition/erosion were principally controlled by episodic reactivation of the Neoproterozoic Ottawa graben, which then periodically modified the stratigraphic expression of the ongoing Sauk transgression. Specifically, episodes of tectonic reactivation occurred during late Early to Middle Cambrian (allounit 1), late Middle to early Late Cambrian (allounits 2 – 3 unconformity), and Earliest Ordovician (allounits 3 – 4 unconformity). The earliest episode is correlated to regional extension of southern Laurentia, whereas the latter two are linked to peri-Laurentian accretion events that triggered reactivation of the Ottawa graben via the Missisquoi oceanic fracture zone.
|
20 |
Stratigraphy and Sedimentology of the Bisbee Group in the Whetstone Mountains, Pima and Cochise Counties, Southeastern ArizonaArchibald, Lawrence Eben January 1982 (has links)
The Aptian-Santonian(?) Bisbee Group in the Whetstone Mountains comprises 2375 m of clastic sedimentary rocks and limestones. The basal Glance Conglomerate unconformably overlies the Pennsylvanian-Permian Naco Group. It consists of limestone conglomerates which were deposited in proximal alluvial fan environments. The superadjacent Willow Canyon Formation contains finer grained rocks which were deposited in the distal portions of alluvial fans. The lacustrine limestones in the Apache Canyon Formation interfinger with and overlie these alluvial fan facies. The overlying Shellenberger Canyon Formation is composed mostly of terrigenous rocks derived from westerly terranes. This formation contains thick sequences of fluvio-deltaic facies as well as a thin interval of estuarine deposits which mark a northwestern extension of the marine transgression in the Bisbee -Chihuahua Embayment. The youngest formation (Upper Cretaceous?) in the Bisbee Group, the Turney Ranch Formation, consists of interbedded sandstones and marls which were deposited by fluvial and marine(?) processes.
|
Page generated in 0.0446 seconds